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Abstract—In stereo vision, two cameras are used to obtain 

two views of a scene from two different standpoints. The 

epipolar geometry describes the relation between the two views. 

When the intrinsic cameras parameters are known, the 

essential matrix is the algebraic representation of this geometry; 

otherwise the fundamental matrix is the representation of such 

geometry. A number of derivation methods of the essential and 

fundamental matrices are available in the computer vision 

literature.  

This paper questions the validity of the equations of these 

matrices and demonstrates that such equations are the result of 

an undefined vector operation.  

 
Index Terms—Essential Matrix, fundamental matrix, stereo 

vision, epipolar geometry, dot product.  

 

I. INTRODUCTION 

In stereo vision, two cameras are used to obtain two 

differing views (i.e., images) of a scene from two different 

standpoints. The cameras are supposed to satisfy the pinhole 

model assumption. In this context, a camera is described by 

intrinsic and extrinsic parameters. The former include 

coordinates of the principal points, pixel aspect ratio, and 

focal lengths. The latter are the position and orientation of 

the camera with respect to the world coordinate system. The 

epipolar geometry describes the relation between the two 

views. When the intrinsic cameras parameters are known, 

the essential matrix is the algebraic representation of this 

geometry. When none of the parameters are known, the 

fundamental matrix encapsulates all the information about 

the epipolar geometry. This geometry which is depicted in 

Figure 1 can be described as a world point ),,( ZYXM   

defined in a world coordinate system and two cameras 

placed at two different positions lC  and rC  to capture the 

point. A coordinate system is defined for each camera. The 

points lC  and rC are the origin of the theses two coordinate 

systems.  

The fundamental matrix developed by Faugeras [4] is an 

improvement of the essential matrix which has been 

introduced by Longuet-Higgins [8] to compute the structure 

of a scene from two views. A number of derivation methods 

have been proposed to derive both the essential and the 

fundamental matrices.  
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Fig. 1. The epipolar geometry.  

 

For computing the fundamental matrix from a set of eight 

or more point matches [5]. Because there is no procedure 

that provide an accurate set of eight or more point matches, 

researchers focus on developing estimate methods of the 

fundamental matrix, rather than reviewing the epipolar 

geometry theory. In the last few years, several methods to 

estimate the fundamental matrix have been proposed, which 

can be classified into linear, iterative and robust methods. 

Linear and iterative methods can cope with bad point 

localization in the image plane due to noise in image 

segmentation. Robust methods can cope with both image 

noise and outliers, i.e. wrong matching between point 

correspondences in both image planes. All of these methods 

are based on solving a homogeneous system of equations 

which can be deduced from the fundamental matrix equation 

[2], [10].  

This paper goes in a different vein to question the validity 

of the equations of the essential and fundamental matrices.  

The rest of the paper is organized as follows: Section 2 

presents Longuet-Higgins’ derivation method of the 

essential matrix. Section 3 addresses the validity of the 

equations of the essential and fundamental matrices. This 

work concludes in section 4. 

 

II. LONGUET-HIGGINS’ DERIVATION METHOD 

Longuet-Higgins [8] defined the image coordinates lm  

and rm  of the world point M  in the two cameras’ 

coordinate systems as   
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Given the translation vector of the right camera with 

respect to the left one ][ zyx tttt  and the rotation 

matrix of the right camera coordinate system with respect to 

the left coordinate system R , the relation between the three-

dimensional vectors representing the world point M  may 

be written as  

)( tMM  lr R                 (2) 

The rotation R  satisfies the relation  

1 RRRR TT  and 1)( Rdet           (3) 

The author [8] defines the essential matrix as  

RSE                (4) 

where S  is the skew-symmetric matrix  
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He adopted the length of the vector t  as the unit of 

distance  

12222  zyx tttt               (6) 

The author [8] then constructs the expression l
T
r EMM  

and used (2) to (6) to conclude the equation 0l
T
r EMM . 

He then divided by rl ZZ  to establish the equation of the 

essential matrix that relates the image points lm  and rm  

0l
T
r Emm          (7) 

Based on the theory of the essential matrix established by 

Longuet-Higgins [8], other methods have been proposed to 

derive E  [7], [9].  

When the only information available is the pixel 

coordinates of points on the two views, the fundamental 

matrix F  encapsulates the relation between the 

corresponding points on the two views through the 

following equation  

0l
T
r Fmm         (8) 

In the same vein some different methods are proposed to 

derive the matrix F  [4], [6], [7] , [10].  

 

III. VALIDITY OF E  AND F  EQUATIONS  

In [3], Basta demonstrated that the development of the 

essential matrix of Longuet-Higgins [8] is flawed. He 

pointed out the origin of the flaw is the construction of the 

expression l
T
r EMM . We will carry on in the same vein to 

examine the validity of the equations of the essential and 

fundamental matrices.  

The epipolar geometry is defined in a 3D vector space 

where two coordinate systems are related by a translation 

t and a rotation R .  

The Euclidean transformation matrix from the left to the 

right coordinate systems used in the epipolar geometry 

performs the translation first followed by the rotation [8]. So, 

as indicated by equation (2), the Euclidean 3D 

transformation matrix is:  

)()( tvv  RT                           (9) 

The rank of the 3D rotation matrix R is 3 as 1)det( R . 

So, the rank of T  is 3 as well.  

The projective transformation matrix from the left to the 

right coordinate systems is the 4×4 matrix which is the 

combination of a rotation matrix R  and a translation vector 

t  as: 









10

tR
P , its rank is 4.  

In all cases, the rank of the transformation matrix is 

greater than or equal to 3.  

The rank of the essential and fundamental matrices is 2 

[6]. Thus, the essential matrix E  or the fundamental matrix 

F  cannot be a 3D transformation matrix from any 

coordinate system to the other.  

The points lm and rm are represented by the vectors lm  

and rm . Thus, the equations of the matrices are equivalent 

to 

0l
T
r Emm  and 0l

T
r Fmm      (10) 

The product of a non-transformation matrix and a vector 

defined in a coordinate system is a vector defined in the 

same coordinate system.  

Recall that the vector lm  is not defined in the right 

coordinate system, and rm  is not defined in the left 

coordinate system. Thus, the vector FT
rm  is defined in the 

right coordinate system and not defined in the left one. And 

the vector lFm  is defined in left the coordinate system and 

not defined in the right one.  

The dot product of two vectors u  and v  is simply the 

sum of products of their components [1]  

zzyyxx vuvuvu  vu                     (11) 

The products l
T
r F mm )(  and )( )l

T
r Fmm   are 

operations between two vectors not defined in the same 

coordinate systems. These operations are not defined unless 

the two vectors (i.e. operands) are defined with respect to 

the same coordinate system.  

The following example illustrated in Figure 2 validates 

this fact.  

The two vectors  zyx ,,u  and  cba ,,1 v  are 

defined with respect to the left coordinate system, and the 

vector  cba ,,2 v  is defined with respect to the right 

coordinate system. The two vectors 1v  and 2v  have the 

same components.  

Let us try answer the question: What is the value of the 
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expression  
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Fig. 2. Two vectors with same coordinates defined in two different 

coordinate systems. 

 

As it is previously specified, the two vectors u  and 

1v are defined with respect to the same coordinate system, 

while the vectors u  and 2v are not defined with respect to 

the same coordinate system.  

It is easily concluded that   1vu
T

c
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.  

By contrast, the expression 2vu
T

is only defined when 

the vector u  is transformed to the right coordinate system, 

or the vector 2v  is transformed to the left coordinate system. 

Following equation (2), the coordinates of u  in the right 

coordinate system will be  
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Again following (2), the coordinates of 2v in the left 

coordinate system will be  
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Therefore, in the right coordinate system:  
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And in the left coordinate system:  
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In all cases,  
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In terms of vector components, the second equation of (10) 

is equivalent to  
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The left hand side of (16) can be interpreted as the dot 

product of the two vectors  Fzyx rrr and 

 Tlll zyx , or the dot product of the two vectors 

 rrr zyx  and  Tlll zyxF .  

In order to have the dot product of (16) defined; the two 

vectors must be defined in the same reference system. 

Which means either  rrr zyx ,,  are the components of a 

vector defined in the left coordinate system which is 

different of the vector rm  already defined in the right 

camera coordinate system, or  lll zyx ,,  are the 

components of a vector defined in the right coordinate 

system which is different of the vector lm  defined in the 

left camera coordinate system.  

Hence, whether the dot operation is performed in the left 

or in the right coordinate system, the equation 0l
T
r Fmm  

is either undefined or is not a relation between the points 

captured by the left camera and the points captured by the 

right camera. The same reasoning for F  applies to E .  

All these clarifications disclose the flaw in the theory of 

the epipolar geometry. Such a flaw is the result of 

performing the dot product on vectors not defined in the 

same coordinate system.  

 

IV. CONCLUSION 

In this paper, we recalled the following mathematical 

facts:  

The product of a non-transformation matrix by a vector 

defined in a reference system is a vector defined in the same 

reference system.  

The essential and fundamental matrices are not 

transformation matrices.  

The dot product of two vectors is only defined when the 

two vectors are defined in the same reference system.  

Based on these facts, we conclude that the equations of 

both essential and fundamental matrices are invalid.  The 

reason for this is because these equations include an 

undefined operation on vectors.  
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