
   
Abstract—In this paper we present the properties of lattice 

ordered groups derived from the properties of partially ordered 
groups. The notion of  ડ-semi groups was introduced by Sen in 
1981. The concept of ડ-  semigroups is a generalization of the 
concept of semigroups  Many classical notions of semigroups 
have been extended to ડ-semigroups, ( S, ડ ,  ) is called an 
ordered ડ-semigroup if ( S, ડ ሻ is a ડ-semigroup and ( S, ൑ ) is a 
partially ordered set such that ࢇ ൑ ฺ ࢈ ൑ ࢉ ࢽ ࢇ ൑ ࢇ ࢽ ࢉ and ࢉ ࢽ ࢈ ,ࢇ for all ࢈ ࢽ ࢉ ,࢈  ડ ࣕ ࢽ and ࡿ ࣕ ࢉ
 

Index Terms—Partially ordered groups, Lattice ordered 
groups, semi groups,  ડ semi groups and ordered  ડ semi groups 
 

I. INTRODUCTION 
A semi group S is said to be partially ordered or a partially 

ordered semigroup if it  is associated with a partial ordering  ≤  
which is defined by ‘ a  ≤  b implies that xay  ≤  xby for all x , 
y in S. The natural partial order which is an obvious partial 
ordering defined by a ≤ b if and only if  a = cb for some c = c2 
Є S. This natural partial ordering is compatible with 
multiplication. Some of the basic properties and results were 
given by Donald B. McAlister and some of the foundational 
results are due to A.H. Clifford.  

Suppose G is a partially ordered group i.e., G is a group 
partially ordered by  ≤. Now a  ≤  b  if and only if 1 ≤ a-1 b  or 
equivalently  a  ≤  b  if and only if 1 ≤ b a-1 .  

Let S and ડ be non empty sets. If there exists a mapping ࡿ ൈ ડ ൈ ՜ ܁ ,ࢇwritten ሺ ,܁ ,ࢽ ሻ࢈  by ࢈ ࢽ ࢇ,  S is called a ડ – 
semigroup if S satisfies ሺ࢈ ࢽ ࢇሻ ࢉ ࣆ ൌ ሻࢉ ࣆ ࢈ ሺ ࢽ ࢇ for all ࢇ, ,࢈ ,ࢽ and ࡿ ࣕ ࢉ  ડ.  Let S be an arbitrary semigroup and ડ ࣕ ࣆ
any nonempty set. Define a mapping ࡿ ൈ ડ ൈ ՜ ܁ ܁  by ࢈ ࢽ ࢇ ൌ ,ࢇ for all ࢈ࢇ ൑ ࢇ ડ. It is easy to see that S is a ડ-semigroup. Hence a semigroup can be considered to be a ડ-semigroup. ( S, ൑ ) is a partially ordered set such that ࣕ ࢽ and ࡿ ࣕ ࢈ ൑ ࢉ ࢽ ࢇฺ ࢈ ൑ ࢇ ࢽ ࢉ and ࢉ ࢽ ࢈ ,ࢇ for all ࢈ ࢽ ࢉ ,࢈  ડ ࣕ ࢽ and ࡿ ࣕ ࢉ
 

II. PROPERTIES OF PARTIAL ORDER GROUPS  
Here we consider the set G+ consisting of elements 

exceeding the identity 1 and has the following properties: 
1) G+ is a submonoid of G 

2) a G+ = G+ a   for each ܽ Є ܩ 

3) 1 is the only invertible element of G+   
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Proposition 2.1   Let G be a partially ordered group and 
suppose that ܽ, א ܾ ܩ  .  Then a and b have a least upper 
bound ܽ ש  ܾ in G if and only if they have a greatest lower 
boundܽ ר ܾ. This is only possible only when a-1 and b-1 have a 
least upper bound. In particular, ܽ ר   ܾ  ൌ  ܽ ሺ ܽ ש  ܾሻିଵ  ܾ ܽ ש  ܾ  ൌ  ܽ ሺܽ ר  ܾሻିଵ ܾ ܽ ר  ܾ ൌ   ሺܽିଵ ש   ܾିଵሻିଵ ܽ ש  ܾ  ൌ   ሺܽିଵ ר   ܾିଵሻିଵ  . 

Also for any ݃ Є ܩ, 
 ݃ሺܽ ש  ܾሻ  ൌ ש ܽ݃   ܾ݃ ሺܽ ש  ܾሻ݃ ൌ ש ݃ܽ   ܾ݃  ݃ሺܽ ר  ܾሻ  ൌ  ݃ܽ ר  ܾ݃   ሺܽ ר  ܾሻ݃ ൌ  ܽ݃ ר  ܾ݃ 

                      

Proof.  Refer McAlister Lecture notes, University of 
Lisbon 

Corollary 2.2  The following are equivalent for a partially 
ordered group G. 

 
1) G is a V-semilattice under   ≤   

2) G is a ∧  -semilattice under  ≤   

3) a V 1 exists for each a Є G 

4) a   ∧   1 exists for each  a Є G 

5) a V b exists for each  a,b Є G+ 

6) a ∧  b exists for each  a,b Є G+ 

7) for each a,b Є G+ there exists c Є G+ such that G+a 

∩ G+b = G+c. 

 

If G satisfies one of the conditions in the above corollary, 
we say that G is a lattice ordered group or simply latticed 
group. 

Definition 2.2.1   A lattice G is called a distributive lattice, 
if for any a,b,c Є G, 

 
(i) a V (b ∧  c ) = (a V b) ∧    (a V c)  and   (ii)   a ∧    (b V 

c) = ( a ∧   b) V ( a ∧    c ).  
 
Clearly conditions (i) and (ii) are equivalent. 
Definition 2.2.2   A lattice  G is called a modular lattice, if 

for any a,b,c Є G such that a ≤ c implies a V (b ∧  c) = (a V b) 
∧   c. 

 Theorem 2.2.3     
 Let G be a lattice ordered group under a partial order  ≤ , then G 

is a modular lattice under  ≤ . 
Proof. The proof is obvious, because if G is a lattice ordered 
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group w.r.t a partial order ≤, then G is a distributive lattice under ≤ 
and every distributive lattice is a modular lattice. 

 Definition 2.2.4   
Two elements a, b of a lattice ordered group G are said to be 

orthogonal  if a ∧  b = 1. 
 Proposition 2.2.5  
Let G be a lattice ordered group and let a,b,c Є G. If  a ∧  b = 1, 

then ac ∧   bc = c. 
 
Proof.  Since a ∧   b = 1, 
 ac ∧    bc  = 1  (ac ∧  bc ) 
             = (a ∧  b) (ac ∧   bc ) 
             = a (ac ∧   bc )  ∧  b ( ac ∧  bc ) 
             = a2 c ∧  abc ∧  bac ∧  b2 c 

             = a2 c ∧  abc ∧  b2 c , since a ∧  a = a 

              = c ( a( a ∧ b) ∧  b2 ) 

             = c ( a ∧  b2 ) 

              = c, since am  ∧  bn = 1 ∀ m,n ≥ 0 

III. COMPLETELY REGULAR Γ-SEMIGROUPS 

An element of a Γ- Semigroup S is completely regular if 
there exists ݔ ߳ ܵ such that ܽ ൌ ,ܽߚݔߙܽ ݔߙܽ ൌ  ܽߚݔ

A Γ-semigroup S is completely regular if all its elements 
are completely regular 

Proposition: If a is an element of a Γ-semigroup S and if ܽ߳ሺ ܵ Γ ܽଶ ሻځሺ ܽଶ Γ ܵ ሻ then a is contained in the greatest 
subgroups of S having e as its identity 

 
Proof: If ܽ߳ሺ ܵ Γ ܽଶ ሻځሺ ܽଶ Γ ܵ ሻ, then ܽ ൌ ଶܽߙ ݔ ൌ  ܽଶݕߙ for ݔ, ,ܵ ߳ ݕ ฺ ߨ ߳ ߙ ܽߙݔ ൌ ሻݕߙሺܽଶߙ ݔ ൌ ሺܽߙݔଶሻݕߙ  ൌ ሺܽଶݕߙሻݕߙሺ׶ ଶܽߙݔ ൌ ܽଶߙݕߙሻ ൌ ׶ሺݕߙܽ ܽଶݕߙ ൌ ܽሻ ׵ ܽߙݔ ൌ  ݕߙܽ
Let ݁ ൌ ܽߙݔ ൌ ݁ߙܽ e being the identity ,ݕߙܽ ൌ ܽଶݕߙ ൌ ܽ ൌ ଶܽߙݔ ൌ ଶ݁ ܽߙ݁ ൌ ሺܽߙݔሻሺܽݕߙሻ ൌ ሺܽߙݔଶሻݕߙ ൌ ݕߙܽ ൌ ݁ 

 e is idempotent ฺ ݁߳ሺ ܵ Γ ܽ ሻځሺ ܽ Γ ܵ ሻ 
 
We know ݁ܩ      ൌ ሼܽ߳ܵ ܽ߳ሺ݁ΓܵሻځሺܵΓ݁ሻ⁄ , ݁߳ሺܽΓܵሻ   ሺܵΓܽሻሽ is the greatest subgroup having e as its identityת
Clearly ܽ߳݁ܩ 
Notation: If a is completely regular element of a 

-semigroups, we denote by a-1, the inverse of a in the  
maximal subgroup of S containing ‘a’ 

Definition: A -semigroups S is left cancellative if ܽߙݔ ൌ ܾߙݔ  implies ܽ ൌ ܾ;  for any  
cancellative if it is both left and right cancellative 

Definition: A -semigroups S is separative if for any x,y ߳ܵ 
 
ଶݔ (1 ൌ ଶݕ ݀݊ܽ ݕߙݔ ൌ ݔ imply ݔߙݕ ൌ  ݕ

ଶݔ (2 ൌ ଶݕ ݀݊ܽ ݔߙݕ ൌ ݔ imply ݕߙݔ ൌ  ݕ

Lemma: In a separative -semigroup S, for any ݔ, ,ݕ ܽ, ,ߙ ܵ߳ ܾ  Γ, the following statements hold߳ߚ

ܽߙݔ (3 ൌ ݔߙܽ ݂݅ ݕ݈݊݋ ݀݊ܽ ݂݅ ܾߙݔ ൌ  ݔߙܾ

ܽߙଶݔ (4 ൌ ܽߙݔ ݏ݈݁݅݌݉݅ ܾߙଶݔ  ൌ  ܾߙݔ

ܽߚݕߙݔ (5 ൌ ܽߚݔߙݕ ݏ݈݁݅݌݉݅ ܾߚݕߙݔ ൌ  ܾߚݔߙݕ
6)  

Proof: 

1) If ܽߙݔ ൌ ݔߙሻܽߙݔሺߙܽ then ,ܾߙݔ ൌ ,ݔߙሻܾߙݔሺߙܽ  Γ߳ߙ

And ܾߙሺܽߙݔሻݔߙ ൌ  ݔߙሻܾߙݔሺߙܾ

So that ሺܽݔߙଶሻ ൌ ሺܽݔߙሻሺܾݔߙሻ and ሺܾݔߙଶሻ ൌ ሺܾݔߙሻሺܽݔߙሻ 

 By separativity, ܽݔߙ ൌ ݔߙܾ  
The opposite implication can be desired easily by 
using symmetry property 

2) If ݔଶܽߙ ൌ ݔ ߙ ܽ ߙ ݔ then by part (i) ,ܾߙଶݔ  ൌ  ݔ ߙ ܾ ߙ ݔ

Hence ሺܽݔߙሻଶ ൌ ሺܽݔߙሻሺܾݔߙሻ and ሺܾݔߙሻଶ ൌ ሺܾݔߙሻሺܽݔߙሻ  and thus by 
separativity ܽݔߙ ൌ ,Then by part iሻ ݔߙܾ ܽߙݔ ൌ  ܾߙݔ

3) Let ܽߚݕߙݔ ൌ  ,ܾߚݕߙݔ
Then ݕߜܽߚݕߙݔ ൌ  ݕߜߚݕߙݔ

By part i), ݔߜݕߚܽߙݕ ൌ  ݔߜݕߚܾߙݕ
Multiplying by suitable elements on the right as  
using part i), we obtain the following equalities: ሺܽݔߚݕߙሻଶ ൌ ሺܾݔߚݕߙሻሺܽݔߚݕߙሻ ሺܽݔߚݕߙሻሺܾݔߚݕߙሻ ൌ ሺܾݔߚݕߙሻଶ 

Which by separating implies ܽݔߚݕߙ ൌ  ݔߚݕߙܾ

But by part i), we have ܽߚݔߙݕ ൌ  ܾߚݔߙݕ
 

IV. CONCLUSION 

In this paper, we related semigroups with Γ-semigroups 

and we  derived different properties Γ-semigroups by using 
the properties of semigroups. 
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