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 Abstract—Bianchi type-III tilted cosmological model for 

stiff fluid is investigated. It has been assumed that the 
expansion in the model is only in two directions i.e. one of the 

Hubble parameter (
A

A 4 ) is zero. The physical and 

geometrical consequences of the model are discussed. 
 

Index Terms—Bianchi type-III universe, cosmology, stiff 
fluid, tilted model. 
 

I.    INTRODUCTION 
Homogeneous and anisotropic cosmological models have 

been studied widely in the framework of general relativity. 
These models are more restricted than the inhomogeneous 
models. But in spite of this, they explain a number of 
observed phenomena quite satisfactorily. In recent years, 
there has been a considerable interest in investigating 
spatially homogeneous and anisotropic cosmological 
models in which matter does not move orthogonal to the 
hypersurface of homogeneity. Such types of models are 
called tilted cosmological models.The general dynamics of 
these  models have been studied in detail by King and Ellis 
[1], Ellis and King [2], Collins and Ellis [3]. Ellis and 
Baldwin [4] have investigated that we are likely to be living 
in a tilted universe and they have indicated that how we 
may detect it. 

Bianchi type III cosmological models are interesting 
because these models allow not only expansion but also 
rotation and shear.In general, these are anisotropic. The type 
III model also has an interesting geometric interpretation. 
The type III Lie group can be considered as the Thurston 
geometry H2 x R which plays an important role in 3-
dimensional geometry [5, 6, 7]. The tilted Bianchi type III 
model is the last of the ever expanding Bianchi models left 
to study in terms of its late-time behavior. Letelier and 
Tabensky [8] have investigated cylindrical self-gravitating 
fluid for stiff matter. Tabensky and Taub [9] have studied 
plane symmetric self gravitating fluid with pressure equal to 
energy density. Wesson [10] has investigated an exact 
solution to Einstein field equations with stiff equation of 
state. Wainwright et al. [11] have derived some exact 
solution which generalized Bianchi type III, V and VIh 
models for vacuum and for stiff perfect fluid. Roy and 
Prasad [12] have retained the perfect fluid to be stiff but 
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have relaxed the comoving restriction over its flow. Hurwitz 
and Spero [13] studied a Bianchi type III cosmology and 
discussed the matter contents effect on isotropic expansion. 
Wang [14] obtained the Bianchi type III cosmological 
model for a cloud string in the presence of bulk viscosity 
and magnetic field. Wang assumed that there is an equation 
of state ρ = kλ  and the scalar of expansion is proportional 
to the shear θ α σ, which leads to a relation between metric 
potentials B = mCn , to obtain this model. Coley et al. [15] 
studied on Bianchi model with vorticity specially type III 
bifurcation. They have shown that for 1 ≤ γ ≤ 2 the late-time 
asymptote is the self similar vacuum spacetime given by ds2 
= −dt2 + t2 (dx2 + e−2x dy2) +dz2 .They also discussed that 
the tilt depends on γ i.e. if γ = 1, the tilt tends to zero while 
for 1 ≤ γ ≤ 2, the tilt is asymptotically extreme. Bagora [16] 
has investigated Bianchi type III cosmological model for 
stiff fluid. Now we have investigated Bianchi type III stiff 
fluid cosmological models for perfect fluid distribution in 
general relativity. The physical and geometrical features of 
the model are also discussed.  

 

II.    THE METRIC AND FIELD EQUATIONS 
We consider the Bianchi type III metric into the form

   

 ds2 = −dt2 + dx2 + B2 e2x dy2 + C2dz2 (1) 

where B and C are functions of ‘t’ only. 

The energy-momentum tensor for perfect fluid 
distribution with heat conduction given by Ellis [17] is 
taken into the form. 

 j
i

j
i

j
i

j
i

j
i qν+νq+pg+νν)+p(=T ∈ (2) 

Together with 
 gij νi νj = −   

       (3) 
 qi qj > 0      

      (4) 
 qi νi    

      (5) 

where p is the pressure, ∈ the density and qi the heat 
conduction vector orthogonal to νi. The fluid flow vector 
has the components ( )coshλ0,0,sinhλ,  satisfying (3), λ 
is tilt angle. 

Using units in which c = G = 1 the Einstein’s field 
equation. 

 j
i

j
i

j
i πT8=Rg

2
1R −−    (6) 
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For the line element (1) leads to  

[ ]λsinhq2+p+λsinh +p)(π8=
BC

CB+
C

C+
B

B
1

2444444 ∈−

      (7) 

πp8=
C

C44 −

πp8=1
B

B44 −−            (9)
 

[ ]λsinhq2p+λcosh +p)(π8=1
BC

CB
1

244 −∈−−−

0=
λcosh
λsinhq+λcoshq+λcoshλsinh +p)(

2

11∈

where the suffix ‘4’ stands for ordinary differentiation 
with respect to the cosmic time ‘t’ Alone. 

 

III. SOLUTION OF THE FIELD EQUATIONS 
Equations from (7) to (11) are five equations in six 

unknown B, C, ∈, p, λ and q1. For the complete 
determination of these quantities, we assumed that the 
model is filled with stiff fluid, which leads to  

  ∈ = p.    (12) 

From equations (7), (10) and (12), we have 

0  =   1
BC

C2B
+

C
C

+
B

B 444444 − .   (13) 

From equations (8) and (9), we have  

0 =  1
B

B
C

C 4444 +− .  (14) 

Equations (13) and (14) lead to 

0 =  
BC

C2B
+

C
C2 4444 .   (15) 

This gives 

μ
a2

μ
μ=

ν
ν 44 − ,    (16) 

where BC = μ, ν=
C
B  and ‘a’ is constant of integration.  

Equation (14) leads to  

1
μ
μ 44 =

From equation (17), we have 
 b2

4 +μ=μ

where  μ4 = f (μ ) and ‘b’ is constant of integration. 
Again From (16), we have 

Hence the metric (1) reduces to the form 

22x22
2

2
2 dz

ν
μ+dyμνe+dx+

f
dμ =ds −

where ν is determined by (19). 
By introducing the following transformations 

 μ = T, x = X, y = Y, z = Z. 

The metric (20) becomes 

22x222
2

2 dZ
ν
T+dYTνν+dX+dT 

b+T
1=ds ⎥⎦

⎤
⎢⎣
⎡

where 
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where N is constant of integration. 
 

IV.      SOME PHYSICAL AND GEOMETRICAL FEATURES 
The pressure and density for the model (21) are given by 

[ ]a
T
a p8π 8π 12

−ψ==∈ .   (23) 

 The tilt angle λ is given by  

   
)abT(2

a2Ta2
λcosh

1
22

1
22

ψ−+
ψ−+

=

   
)aTa(2

Tλsinh
22

1 −−ψ
=

The scalar of expansion θ calculated for the flow vector 
vi is given by 

=θ [(2−5a)T4+(6a2−4ab−8a2)T2−8a3b+4a2b+(4a2T2+4a4+2

T4−2aT2)ψ1]×
)a2Ta2(2)aaT(T2

1

1
222/3

1
22 ψ−+ψ−+

.                   

      (26) 

The components of fluid flow vector vi and heat 
conduction vector qi for the model (21) are given by 
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(30)                                                            

The non-vanishing components of shear tensor (σij) and 
rotation tensor (ωij) are given by
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 Here 

bT 2
1 +=ψ , 

2ψ = )ba4Ta4abT5aT4( 32324 +++ , 

)Tba2a2Ta7( 42322
3 +++=ψ , 

)ba2a2TTa3( 23422
4 +++=ψ ,

ba4Ta4abTaT2 32324
5 +++=ψ . 

The rates of expansion Hi in the direction of x, y and z 
axes are given by 
             

0=H 1
, [ ]a

T
1=H 12 −ψ ,

T
a=H 3

. 

V.  CONCLUSION 
Generally, the model represents shearing, rotating and 

tilted type universe in which the flow vector is geodesic. So 
that it is anisotropic. The model starts with big bang 
singularity. Rate of expansion along x-axis vanishes, where 
as the rate of expansion along y and z is decreasing function 
of time. Also the expressions for pressure and density have 
singularity at T =0, i.e. at T = 0, p→∞ and T = ∞, ∈→0. 
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