
 
Abstract—The analysis of water waves in general is an 

interesting study point in chemical and mechanical 

engineering. Ocean waves study is a branch of water wave 

models that has gained significant momentum in the last 

couple of decades. The paper investigates a phenomenon called 

“wave-breaking'' which is one of the most intriguing long-

standing problems of water wave theory. A certain class of 

equations namely Camassa-Holm and Degasperis-Procesi is 

generalized and new results on existence are obtained. 

 
Index Terms—Local existence, blow-up, b-family of 

equations. 

 

I.   INTRODUCTION 

For models describing water waves, wave breaking holds 

if the wave profile remains bounded, but it's slope becomes 

unbounded in finite time [11]. Breaking waves are 

commonly observed in the ocean and important for a variety 

of reasons, but surprisingly little is known about them. 

Indeed, breaking waves place large hydrodynamic loads on 

man-made structures, transfer horizontal momentum to 

surface currents, provide a source of turbulent energy to mix 

the upper layers of the ocean, move sediment in shallow 

water, and enhance the air-sea exchange of gases and 

particulate matter [3], [10]. To further understand why 

waves break and what happens during and after breaking 

themselves, we must first investigate the dynamics of wave 

breaking. Research work on breaking waves can be divided 

into three categories: those concerning waves before, during 

and after breaking. Although we are now understanding 

much about the processes leading up to breaking.The 

pertinent question is: What happens after breaking of those 

waves? 

Consider the following  partial differential equations. 

 
                                     

 

with            

 
The Degasperis-Procesi (DP) [6,5] equation is a special 

case of the above 

 

 
 

with       –       

 
The solution to the DP equation describes shock waves 

[7]. Liu and Lin [12], [13], [14] proved that the first blow-
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up to the DP equation must occur as wave breaking and 

shockwaves are likely to appear afterwards.The other two 

integrable equations in the family are the Korteweg-de 

Vries (KdV) (b=1) and and the Camassa-Holm (CH) (b=2) 

shallow water equation [2], [4].These three cases exhaust in 

the completely integrable candidates for (1) by Painleve's 

analysis. For the CH equation, a procedure to understand 

the continuation of solutions beyond wave breaking has 

been constructed by Bressan and Constantin [1]. The paper 

investigates 'wave breaking' [11] by proving a result related 

to the blow up [7], [10] of solutions to a certain periodic 

profile. 

 

II.   LOCAL WELL-POSEDNESS 

In this section, we apply Kato's theory to establish local 

well-posedness for the Cauchy problem. For convenience, 

we state here Kato's theorem in a form suitable for our 

purpose. Consider the abstract quasi-linear evolution 

equation 

 

                 (1) 

 

Let  and  be Hilbert spaces such that  is 

continuously and densely embedded in , and let       
   be a topological isomorphism. Let L(Y,X) denote the 

space of all bounded linear operators from Y to X. If X=Y, 

we denote this space by L(X). The linear operator  

belongs to          where   is a real number, that is, -A 

generates a 0C   semigroup such that ( ) .sA s

L Xe e ‖ ‖  

Under the assumptions made by [8], [9], we state the 

following lemma: 

Lemma 2.1.  

(Kato, [8]) Assume that (i), (ii), and (iii) hold. Given 

0 ,v Y  there is a maximal T > 0 depending only on 

0||v ||Y  and a unique solution v to (1) such that

 1

0(? ) ([0, ), ) [0, ),v v v C T Y C T X   .Moreover, 

the map 0 0(? )v v v  is a continuous map from Y to 

 1([0, ), ) [0, ), .C T Y C T X  

We begin by fixing some notations. All spaces of 

functions are assumed to be over ,  where   

for simplicity, we drop ,  in our notation for function 

spaces if there is no ambiguity. If A is an unbounded 

operator, we denote by D(A) the domain of A. [A, B] 
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denotes the commutator of two linear operators A and B. 

With m = u - u xx , we consider the Cauchy problem 

0 0,

0, 0, ,

(0, ) ( ) ( ), ,        

t x x

xx

m um bu m t x

m x u x u x x

    

  
 

                            u(t,x)=u(t,x+1)                       (2) 

Note that if
| |1

( ) : ,
2

xg x e x  , then 

2 1 2(1 ) * ( )x f g f for all f L    for all 

2 ( )f L  and g m u   where  denotes convolution. 

Using this identity, we can rewrite (2) as a quasi-linear 

evolution equation of hyperbolic type: 

2 23
( ) 0, 0,
2 2

t x x x

b b
u uu g u u t x


        

0(0, ) ( ),u x u x x   

u(t,x)=u(t,x+1)                                (3) 

Theorem 2.2 

For any constant b, given 
3

( ),
2

sH s  , there exist a 

maximal T=T(u_{0})>0  and a unique strong solution u 

to (3), such that: 

 
1 1

0(? ) ([0, ), ( )) ([0, ), ( ))s su u u C T H C T H     

 
Moreover, the solution depends continuously on the 

initial data, i.e. the mapping  

 
1 1

0 0(? ) : ( ) ([0, ), ( )) ([0, ), ( ))s s su u u H C T H C T H  

 

Is continuous 

To prove this theorem, we apply Lemma 2.1 with  

 
1

2 2 1 2 2
3

( ) , ( ) ( ), , , (1 ) ,
2 2

 s s

x x x x

b b
A u u f u g u u Y H X H 

          
 

 

And 
1Q   [8] 

Theorem 2.3 

The maximal  in Theorem 2.2 may be chosen 

independent of s in the following sense. If   

   1 1

0(? ) [0, ), [0, ),s su u u C T H C T H    to (3)  

and  
0

su H


  for some 
3

, ,
2

s s s    then 

   1 1[0, ), [0, ),s su C T H C T H
    and with the 

same T. In particular, if 0

0

,s

s

u H H



   then 

 [0, ), .u C T H 
 

 

III.   BLOW UP 

By using the local well-posedness result of Theorem (3) 

and energy estimates, the following precise blow-up 

scenario of strong solutions to (3) can be obtained. 

Theorem 3.1 

Assume b  and 
0

3
( ),

2

su H s  . Then blow up 

of the strong solution 0(? )u u u  in finite time T    

occurs if and only if 

 

inf{(2 1)infl [ ( , )]}m .i x
t T x

b u t x
 

  
 

 

Case 1:  If b=1/2 

Proof:  

 

       (4) 

 

On the other hand, 

 

 

 
Then, By 3.2 

 

 

 

By means of Gronwall's inequality, 

 

 

Case 2: if b 
1

2
  and if u_x  is bounded 

Proof: Applying a simple density argument, we only 

need to show that the above theorem with some 3.s   

Here we assume s=3 to prove the above theorem. 

Multiplying (2) with m and integrating on  with respect to 

x, we obtain: 

 

                (5) 

 

On the other hand, differentiating (2) with respect to x 

and multiplying with m x , integrating on  with respect to 

x, and integrating by parts yield 
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  (6) 

It is thereby inferred from (3.2) and (3.3) that 

 

  (7) 

 

If xu  is bounded from below on [0, )T  , i.e., there 

exists M > 0 such that ( , ) [0, ) ,xu t x M on T    

then the relation (6) implies: 

 

 

 

And by means of Gronwall's inequality, we deduce that 

 

  (8) 

 

Noting that, 

 

 

 

and in view of  (8), it follows that if   xu t  is bounded 

from below on [0,T) , then the 
3 ( )H -norm of the 

solution to Eq.(3) is said not to have broken in finite time.  

This completes the proof of Theorem (4). 

 

IV.   REMARKS: 

It can be further shown that if 0 0 0m =u -u xx  doesn't 

change sign, then 
( ),m t t

 will not change sign as long as 

m(t)
 exists. It is observed that if 

u(t,x)
 is a solution to (3) 

with 
u(0,x)

 with 0u(0,x)=u x,
 then 

-u(t,-x)
 is also a 

solution to (2.3) with initial datum 0-u (-x)
. Hence, due to 

the uniqueness of the solutions, the solution to (3) is odd as 

long as the initial datum 0u x
 is odd. The blow up theorem 

is concerned with this data. 
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