
  
Abstract—A study on a Circular cylindrical thin-walled 

shell failure made of GRP composite subjected to static 
internal and external pressure was carried out. The results 
were acquired using analytical and FEM simulation 
approaches for various volumetric fiber fractions. Fiber 
breakage, matrix breakage, interlaminate shear deformation, 
delamination shear deformation and micro buckling failure 
were investigated employing maximum failure criteria against 
internal and external pressure. One-ply cylindrical shell with 
fiber angle orientation of 0 degree was modeled in ABAQUS 
finite element simulation and the result was varied using 
analytical approaches. Moreover, the pressure fluctuations for 
various volumetric fiber fraction were quadratic according to 
plotted graphs. Meanwhile, MATLAB software was used for 
theoretical analysis. The comparison of two approaches was 
proved to be accurate. Subsequently, failure strength of 
various laminated GFRP cylindrical shell with different fiber 
angle orientations at each ply was studied for diverse 
volumetric fiber fraction factors. Stacking sequence, fiber 
angle orientations were mainly effective on failure strength. 
 

Index Terms—Volumetric fiber fraction factor, internal and 
external pressure, GFRP composite cylindrical shell, failure 
strength, theoretical analysis, finite element simulation. 
 

I. INTRODUCTION 
The use of composite materials in pressure vessels and 

piping systems has been increasing recently [1-3]. The great 
portion of application has been related to the manufacturing 
and engineering designs, particularly, laminated composite 
pressure vessels with cylindrical geometry. Thus, the 
appropriate engineering designs concerning laminated 
composite structures require some crucial factors such as 
failure analysis which must be put into consideration.  

Finite element method is a numerical method that can be 
used for solving engineering problems.  

It is particularly useful for problems involving complex 
geometries, combined loading and material properties, in 
which the analytical solutions are not available. The failure 
factor can be obtained through numerical finite element 
(FEM) simulation and experimental approaches which can 
independently be used to validate the analytical solutions. 
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Classical plate theory can be used to obtain analytical 
solutions of laminated composite structures. Numerous 
researches have been carried out in composite pressure 
vessels design aspects and their manufacturing methods [4-
9]. In this paper, Effect of Volumetric Fiber Fraction on 
Failure Strength of Thin-walled GFRP Composite 
Cylindrical Shell Externally Pressurized is investigated. 

 

II. THEORETICAL ANALYSIS OF COMPOSITE CYLINDRICAL 
SHELL 

In this study, the laminated cylindrical GFRP shell is 
modeled as a symmetrical laminated composite with no 
bending and twisting moments in each ply since the shell is 
considered thin. The fiber angle orientation (winding angle 
of fiber with respect to axial direction) is β, and the distance 
from mid-ply to the thK ply is h. ply’s thickness t is 
assumed to be constant. It can be obtained using Eq.1. 
Cylinder’s mean radius R can also be obtained using Eq.2. 
The stress resultants in the geometric coordinate axes are 
stated in Eq.3.  
 

)/( kHt =                                   (1) 
 

)2/(HrR o −=                            (2) 
 

[ ] [ ][ ]ε.AN =                                (3) 
 
where, k is number of layers, H is total thickness, 0r  is 
cylinder’s outer radius, N is vector of stress resultants [N/m], 
A stands for extensional stiffness matrix and ε is strains 
vector. The relationship between stress and strains for the 
Kth orthotropic layer is represented in Eq.4. 
 

εσ .
)()( KK Q=                                (4) 

 
where )(Kσ  stands for vector of stresses for the Kth ply, Q  
is known as transformed material stiffness content (Refer to 
Appendix A). Local stress resultants can be obtained using 
Eq.5. 
 

[ ] [ ][ ]Global
K

Local
K T σσ .=                           (5) 

 
where, T is transformation matrix (Refer to Appendix A) 
which varies as fiber angle orientation changes. Global load 
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resultants, XN and θN , applied per unit length [N/m] in 
the axial and radial directions in shell element pressurized 
can be obtained using Eq.6 and Eq.7, respectively. The 
shear stress value shown in Eq.8 is equal to zero due to 
symmetry of laminated cylindrical dome and symmetrically 
loading. 
 

)2(
2

Pr
2

11

r
rr

N X −=                            (6) 

 

2
Pr 1rN =θ

                             (7) 

 
0=ϕθN                                 (8) 

 
where, 2r  is meridian radius which is infinite for cylindrical 

shell and 1r , in contrast, is radial radius of cylinder which is 

constant. Values of 1r   and 2r  in a shell are shown in Eq.9 
and 10, respectively.   
 

     ar =1                                      (9) 
 

     ∞=2r                                 (10) 

 
The material properties of Graphite reinforced Polymer 

are presented in Table.1. Reduced stiffness matrix and 
transformation matrixes both are dependent on the material 
properties of composite materials (Refer to appendix A). 
The compliance matrixes A, B and D of composite shell 
externally pressurized can be shown in Eq.11, Eq.12, Eq.13 
and Eq.14, respectively. By substituting the Eq.9 and Eq.10 
into the Eq.6 and Eq.7, Values of global load resultants in 
circular cylindrical shell subjected to pressure can be 
obtained resulting in Eq.15 and Eq.16, respectively. Fig.1 
shows the stacking sequences in a lamination. 
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Fig. 2 and Fig. 3 illustrate the effect of fV  within 

interval of fV = [0.25, 0.75] for various thin-walled GFRP 

cylindrical shells with different total thicknesses with 
400 =r  [mm] and length L=230 [mm] subjected to 

internal and external pressure, respectively.The cylindrical 
shells are assumed to be one layer with 0=β  . According 

to Fig.2 and Fig.3, it can be noticed that by increase in fV , 

the absolute value of CrP rises quadratically for various 
total thicknesses for both internal and external pressure 
cases. However, by comparison of Fig.2 and Fig.3, it can be 
noticed that the shell is more resistible against external 
pressure than internal pressure. 

 
TABLE I: MATERIAL PROPERTIES 

Engineering Constant Graphite Fiber IMHS Epoxy [10]

][1 GPaE  220.0 3.447 

][2 GPaE  13.70 3.447 

][12 GPaG  8.960 1.276 

12υ  0.25 0.35 

][MPaSut  2415.0 103.0 

][MPaSuc  -2070.0 -241.0 

][MPaSus  - 89.60 

]/[ 3mkgρ  1772 1210 

 

 
Fig. 1. Schematic of Lamination Geometry. 

 

 
Fig. 2. Effect of 

fV  on internal 
CrP in one-ply GFRP cylindrical shell and 

0=β . 
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Fig. 3. Effect of 

fV  on external CrP in one-ply GFRP cylindrical shell and 

0=β  

 

III. FEM SIMULATION APPROACH 
In this step, one-ply circular cylindrical shell is simulated 

via ABAQUS FEM analysis. The aim is to find out the 
critical internal and external pressure )( CrP applied 
resulting in first-ply failure for various volumetric fiber 
fraction factors. Material properties are assigned to shell 
section, local material orientations are determined, the 
pressure and boundary conditions are applied, and the 
model is meshed using quadratic shell element with 8 
degree of freedom and finally is analyzed in job step. The 
results are checked with analytical data acquired by 
MATLAB programming codes.  

The comparisons of analytical solutions and FEM 
simulations for a one-layer GFRP cylindrical shell subjected 
to static internal and external pressure with total thickness 
of 0.4 [mm] and fiber angle orientation of 0 degree are 
shown in Fig. 5 and Fig. 5, respectively. According to Fig 3 
and Fig. 4, the critical internal and external pressure 
fluctuations VS fV  are plotted for both analytical and FEM 

simulation. The error is proved to be insignificant. The 
schematic of one-ply GFRP cylindrical shell contour plot 
presenting critical transverse stresses 22S to avoid matrix 
breakage is modeled in ABAQUS complete environment 
visualization for input data H=0.4 [mm], 0=β and fV = 

0.25 for both internal and external pressure cases (Refer to 
Fig. 6 and Fig. 7). 
 

 
Fig. 4. Comparison of EFM and analytical approaches for GFRP 

cylindrical shell, 25.0],[4.0,0 === fVmmHβ . 

 
Fig. 5. Comparison of EFM and analytical approaches for GFRP 

cylindrical shell, 25.0],[4.0,0 === fVmmHβ . 

 
Fig. 6. Schematic of one-ply GFRP cylindrical shell color contour 

subjected to internal pressure, 25.0],[4.0,0 === fVmmHβ , Failure due to 

tensile matrix breakage (S22). 
 

 
Fig. 7. schematic of one-ply GFRP cylindrical shell contour plot subjected 

to external pressure, 25.0],[4.0,0 === fVmmHβ , Failure due to 

compression matrix breakage (S22). 
 

IV. ANALYTICAL RESULTS FOR MULTI-LAYERED GFRP 
CYLINDRICAL SHELL 

In this step, the analytical approach is used in order to 
find critical internal and external pressure applied on multi-
layer cylindrical GFRP shell with different stacking 
sequence based on various fV  (Refer to Table.2). Language 

of technical computing MATLAB is used during analysis. 
The Critical internal and external pressure acquired 
analytically and their mode of failure to avoid first-ply 
failure considering each lamination is represented in 
TABLE III, TABLE IV, TABLE V and TABLE VI 
respectively.  
 

TABLE II: PROPERTIES OF PRESSURE VESSELS   
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Lamination Arrangement Dimensions 

s]54/54[ °° −  Outer radius 0r = 4 [cm] 

s]45/45[ °° −  Length L = 23 [cm] 

s]54/54/54[ °°° −  Lamina Thickness t = 0.1 [mm] 

s]90/0/90[ °°°  fV = {0.25,0.5,0.75} 

 
TABLE III: EFFCT OF STACKING SEQUENCE AND 

fV FACTORS ON FAILURE 

STRENGTH IN LAMINATED GFRP CYLINDRICAL SHELLS SUBJECTED TO 
STATIC INTERNAL PRESSURE 

Lamination Arrangement 
Critical Internal Pressure )( CrP   [MPA]

fV = 0.25 fV = 0.5 fV = 0.75

s]54/54[ °° −  4.313 8.429 12.631 

s]45/45[ °° −  2.834 2.966 3.246 

s]54/54/54[ °°° −  4.622 8.852 13.256 

s]90/0/90[ °°°  6.365 12.544 16.645 

 
TABLE IV: EFFCT OF STACKING SEQUENCE AND fV FACTORS ON FAILURE 

STRENGTH IN LAMINATED GFRP CYLINDRICAL SHELLS SUBJECTED TO 
STATIC EXTERNAL PRESSURE 

Lamination Arrangement 
Critical External Pressure )( CrP   [MPA]

fV = 0.25 fV = 0.5 fV = 0.75

s]54/54[ °° −  -3.697 -6.947 -7.426 

s]45/45[ °° −  -2.834 -2.966 -3.246 

s]54/54/54[ °°° −  -3.962 -7.295 -7.793 

s]90/0/90[ °°°  -5.456 -10.338 -11.043 

 
TABLE V: FAILURE TYPES INVESTIGATION IN LAMINATED GFRP 

CYLINDRICAL SHELLS SUBJECTED TO STATIC INTERNAL PRESSURE WITH 

VARIOUS fV
AND STACHING SEQUENCES  

Lamination 
Arrangement 

Type of Failure (Refer to Appendix. B)  

fV = 0.25 fV = 0.5 fV = 

0.75 

s]54/54[ °° −  Fiber Breakage fiber 
Breakage 

Fiber 
Breakage 

s]45/45[ °° −  
Interlaminate 

Shear 
Deformation 

Interlaminate 
Shear 

Deformation 

Interlamin
ate Shear 
Deformati

on 

s]54/54/54[ °°° −
 

Fiber Breakage Fiber 
Breakage 

Fiber 
Breakage 

s]90/0/90[ °°°  Fiber Breakage Fiber 
Breakage 

Matrix 
Breakage 

 
TABLE VI: FAILURE TYPES INVESTIGATION IN LAMINATED GFRP 

CYLINDRICAL SHELLS SUBJECTED TO STATIC EXTERNAL PRESSURE WITH 

VARIOUS fV
AND STACHING SEQUENCES  

Lamination 
Arrangement 

Type of Failure (Refer to Appendix. B)  

fV = 0.25 fV = 0.5 fV = 0.75

s]54/54[ °° −  Fiber Breakage Delamination 
Shear 

Delaminati
on Shear 

s]45/45[ °° −  
Interlaminate 

Shear 
Deformation 

Interlaminate 
Shear 

Deformation 

Interlaminat
e Shear 

Deformatio
n 

s]54/54/54[ °°° −
 

Fiber Breakage Delamination 
Shear 

Delaminati
on Shear 

s]90/0/90[ °°°  Fiber Breakage Delamination 
Shear 

Delaminati
on Shear 

 

According to Table.3 and Table.4, it is noticeable that the 
high strength against failure can be detected in the 
lamination s]90/0/90[ °°°  for both internal and external 
pressure cases for all volumetric fiber fraction factors. In 
other hand, the low resistance can be inspected in the 
lamination s]45/45[ °° −  for both internal and external 
pressure cases. However, laminations 

s]54/54[ °° − and 

s]54/54/54[ °°° −  have somehow same behavior 
concerning failure strength for one specific fiber fraction 
factor. Considering the effect of fiber fraction factor for one 
lamination, it is obvious that any increase in this factor leads 
in rise in failure strength. 

The comparison between the results acquired based on 
the Table.3 and Table.4 proves the higher strength of the 
corresponding laminated cylindrical shells subjected to 
internal pressure than external pressure for all laminations.   

TABLEB V and TABLE VI represent the type of failure 
occurring in corresponding cylindrical shells which are 
acquired employing maximum stress criteria mode. Each 
lamination has quite different failure mode. For instance, the 
lamination 

s]45/45[ °° −  is vulnerable to interlaminate shear 
deformation for all

fV  for both internal and external pressure 

cases.  
Considering internal pressure cases and regardless of 

lamination s]45/45[ °° − , the fiber breakage failure can be 
detected for laminations s]54/54[ °° − and s]54/54/54[ °°° −
for all corresponding volumetric fiber fractions. Lamination 

s]90/0/90[ °°°  has fiber breakage failure for volumetric 
fiber fraction of }5.0,25.0{=fV and matrix breakage failure 

for volumetric fiber fraction of }75.0{=fV . 

Based on the data obtained for external pressure case and 
regardless of lamination s]45/45[ °° − , fiber breakage 
failure occurs for }25.0{=fV in whole laminations; 

however, delamination shear is detected for }75.0,5.0{=fV . 

 

V. CONCLUSION 
As follows from foregoing analysis, the effect of 

volumetric fiber fraction factor ( fV ) on failure pressure 

was investigated for GFRP cylindrical shells subjected to 
internal and external pressure with various total thicknesses. 
It was noticeable that effect of fV  is straight in failure 

strength of GFRP cylindrical shells. The behavior of 
internal and external CrP fluctuations was quadratic as fV  

varied. Subsequently, the theoretical results were validated 
by FEM simulation. In addition, the effect of stacking 
sequence for various laminations was put into consideration 
including type of failure and failure strength employing 
maximum stress criteria mode. Lamination s]90/0/90[ °°°  
was proved to be more resistance against failure pressure for 
different fV factors for both internal and external pressure 

cases; however, lamination
s]45/45[ °° − , in contrast, showed 
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weaknesses against failure pressure for all
fV  factors. 

Lamination 
s]45/45[ °° −  is totally vulnerable to 

interlaminate shear deformation for all 
fV  factors for both 

internal and external pressure cases. In addition, by 
selecting appropriate arrangement of ply’s winding angles, 
the best and optimal layups, which basically means high 
critical external pressure values at each ply, can be achieved. 

 

VI. APPENDIX A 

The elements of the reduced stiffness matrix [ ]Q of a 
laminate shown in Eq.8, Eq9 and Eq.10 are described as 
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The standard transformation matrix is  
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where c is )(βCos  and s is )(βSin   

The lamina stiffness matrix [ ]Q  elements can be 
represented as below 
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VII. APPENDIX B 
Simplified composite micromechanics equations for 

compressive strength are classified as below: 

A. For Longitudinal Compression 
Fiber Compression: 
 

 fCfCL SVS ×≈11                         (B.1) 
 

Delamination Shear:    
 mTSLCL SSS 5.210 1211 +≈                     (B.2) 

 
Micro buckling:           
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B. Transverse Compression  
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C.  Interlaminate Shear                  
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where, 2212 ,,,,, fmfmmTfC EEGGSS  are fiber compressive 

strength, matrix transverse compressive strength, matrix 
shear module, fiber shear module, matrix elasticity module 
and fiber elasticity module, respectively.  
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