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Abstract—An efficient and accurate numerical method has 

been proposed in this paper to estimate the acoustic coefficient 

in a 2D acoustic wave equation. The inverse problem is 

formulated as a PDE-constrained optimization problem, in 

which the forward problem is numerically solved by both 

efficient finite difference schemes. To generate the gradient of 

the quadratic misfit function with respect to the unknown 

coefficient, the widely used automatic differentiation tool 

TAMC is used. Finally a gradient-based optimization algorithm 

is applied to minimize the misfit function. Numerical results are 

presented to show that the proposed method is effective and 

robust in estimating the acoustic coefficient. 

 
Index Terms—Inverse problem; wave equation; finite 

difference method; adjoint method; optimization. 

 

I. INTRODUCTION 

The identification of model coefficients in an acoustic 

wave equation through observational data plays a crucial role 

in applied mathematics, geo-science, physics and many other 

areas. This technique has been widely used to determine the 

unknown property of a medium in which the wave is 

propagated by measuring data on its boundary or a specified 

location in the domain. A great deal of work have been done 

and many direct and indirect methods have been reported in 

the past  decades [1-4,10]. In the wave equation, the unknown 

coefficient which characterizes the property of the medium is 

important to the physical process but usually cannot be 

measured directly, or very expensive to be measured, thus 

some mathematical method is needed to estimate it.  

In this paper, we extend the method developed in [5] to a 

2D acoustic wave equation subject to extra boundary 

condition. The wave equation has been widely used in 

modeling wave propagation in mediums such as earth. It is 

quite often that geophysicists need to know the internal 

structure of a certain area of the earth. However, due to the 

high drilling cost, it is impossible to drill many wells and 

examine the rock samples. Fortunately, the underlying 

mathematical model that describes the wave propagation is 

well understood, and it is much easier and more 

cost-effective to record the wave information on the surface 

of the domain of interest. Such technique forms exactly an 

inverse problem of wave equation. The basic question is: is it 

possible to recover the coefficient from the measurements on 

the surface of the interested part of the earth? As one can 

expect, there is no simple answer for this question, as a matter 
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of fact, the complete mathematical solution of this questions 

is quite complicated, and is still partially answered or even 

unanswered at all.  

One difficulty in solving an inverse problem is the 

instability, which means that a set of almost perfect 

observational data could produce a totally wrong result. 

Although the problem is still not solved completely, some 

important progresses on the stability were made in the past. 

According to Isakov, the inverse problem is stable if some 

smooth conditions for the domain, initial and boundary 

conditions are satisfied. More details regarding the 

well-posedness of the inverse problem can be found in [8]. 

For homogeneous wave equation, the analytical solution can 

be obtained for certain initial and boundary conditions. 

However, for the general case, the analytical solution is 

difficult to get, thus we should use numerical methods to 

solve the forward problem when an inverse problem is solved. 

In this paper, we applied a second-order accurate central 

finite difference approximation for time derivative and a 

fourth-order finite difference schemes to approximate uxx

and uyy . 

An accurate gradient is critical in minimizing the cost 

functional. Herein we apply automatic differentiation tool 

TAMC to generate discrete adjoint, then use it to calculate 

the gradient. The rest of this paper is organized as the 

following.  In section 2, we formulate the inverse problem as 

a PDE-constrained optimization problem, followed by the 

description of an efficient finite difference scheme to solve 

the wave equation. In section 4 the automatic differentiation 

tool TAMC is briefly introduced, while the optimization 

package is introduced in section 5. Some numerical results 

are presented in section 6 and finally some conclusions are 

addressed. 

 

II. MATHEMATICAL FORMULATION OF THE INVERSE 

PROBLEM 

Let us consider the following 2D wave equation  

            (1) 

satisfying the initial and boundary conditions:   

      (2)    

   (3) 

    (4) 

and subject to the extra boundary condition:   

      (5)  

where ),( yxc  is the unknown acoustic coefficient, n is the 

outer normal orientation of  , ),,(0 yxu  ),,(1 yxu ),,( tyx

and ),,( tyx are functions  that satisfy some regularity 

conditions,   is the boundary of the square domain  . For 

the sake of simplicity, throughout this paper, we assume that 
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, with L  be a positive constant. 

If the coefficient ),( yxc  is known, the problem (1)-(5) is 

obviously over-specified because of the extra boundary 

condition in (5). However, since the coefficient ),( yxc  is 

unknown, a unique solution may exist and can be obtained 

through solving an inverse problem governed by the wave 

equation. Here we assume that the initial and boundary 

conditions are sufficiently smooth to guarantee a unique 

solution. More details regarding the existence and uniqueness 

can be found in [8,18]. 

The numerical procedure to estimate ),( yxc  and 

corresponding solution ),,( tyxu  is inherently an iterative 

procedure, which includes three main steps: 

1. Starting from an initial guess ),(0 yxc , the forward 

problem defined in (1)-(4) is solved. 

2. The numerical result from step 1 is compared with the 

condition in Eq. (5) to calculate the cost functional, then the 

gradient (derivative) of the cost functional with respect to 

),(0 yxc  is calculated from the adjoint. 

3. Optimization algorithm is applied to minimize the cost 

functional, and the three steps are repeated till convergence is 

obtained. 

Here the cost functional )),(( yxcJ is defined as 

 

   (6) 

 

where  is the solution of the 

initial-boundary value problem (1-4) based on ),( yxc ,  ds

is the line integral along the boundary of  ,    and   are 

non-negative regularity parameters. Note that in real 

computation, the integral in (6) is implemented by some 

high-order numerical methods such as Simpson's formula. 

A detailed discussion on how to choose these parameters 
  and   to ensure the existence and uniqueness, and to 

improve the accuracy and efficiency of the solution is 

available in [5].  In general, if the user has no prior 

information regarding ),( yxc , they can simply set the 

parameters as zeros, although it may cause the inverse 

problem be ill-posed. 

 

III.  FINITE DIFFERENCE METHOD FOR THE WAVE EQUATION 

For special initial and boundary conditions, the 

initial-boundary value problem defined in (1)-(4) can be 

solved analytically, but it becomes almost impossible when a  

general initial and boundary value problem is considered. 

Thus, accurate and efficient numerical schemes are needed to 

solve the wave equation.  

To simplify the discussion, we assume that the domain    

is divided  into a uniform NN   grid with step sizes 

.For convenience, we also assume 

that time step size  is used for time integration. 

The numerical solution of ),,( tyxu  at grid point ),( ji yx and 

time level tktk   is denoted as k

jiu ,
. It is well-known that 

the central finite difference operators 22 / hx and 22 / hy

approximate xxu  and yyu  with only second-order accuracy, 

where 22 / hx and 22 / hy   are defined as: 

                   (7) 

                    (8) 

In order to obtain fourth-order approximation in space, we 

replace 
2

x  and 
2

y  by  and  

respectively.  

Based on the approximation, the original wave equation in  

(1) is transformed to the following ODE system 

   (9)  

with  

Depending on the discretization of time derivative, the 

numerical methods for the ODE system (9) can be classified 

into two categories: explicit and implicit schemes. The 

explicit scheme is efficient but only conditionally stable, so 

in general small time step size is required. The implicit 

scheme is usually unconditionally stable but a linear or 

nonlinear algebraic system needs to be solved at each time 

step, which makes it less efficient. A detailed comparison can 

be found in [6,7]. In this paper, we apply the central finite 

difference scheme to the second-order time derivative, and 

obtain the following formula: 

(10) 

which is second-order accurate in time and fourth-order 

accurate in space.  Note that two initial conditions are needed 

in  (10)  but only  ),(0 yxu  is given explicitly in (2), so we 

need to find a second-order accurate approximation of the 

second initial condition. Namely we have  

       (11)  

where , and the 

truncation error of the approximation is 3t . 

Once the numerical solution based on an initial guess 

),(0 yxc  is available, we can use the observational data to 

calculate the cost functional. Since the extra boundary 

condition in Eq. (5) is  Neumann boundary condition, the 

numerical solution cannot be used directly. We firstly apply 

Taylor expansion at the boundary points to approximate

nu  / . Since the numerical scheme for the forward problem 

is second-order in space, the interpolation scheme should be 

second-order accurate at least. For example, the following 

schemes can be used to approximate the boundary 

conditions: 
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 where 
n

jiu ,

 

is the numerical solution at the grid point ),( ji yx

 

at time level 
nt , based on the initial guess ),(0 yxc . The time 

integral is implemented by Simpson’s rule, which is 

fourth-order accurate. So eventually the cost functional is a 

function of ),( yxc .

 

 
IV.

 

DISCRETE ADJOINT GENERATED BY AUTOMATIC  

DIFFERENTIATION

 The success of the gradient-based optimization relies on an 

accurate derivative of the cost functional with respect to the 

unknown coefficient. In this section we use TAMC

 

to 

generate the discrete adjoint which will be used to calculate 

the gradient.

 In real computation, ),( yxc

 

has to be discretized on a 

finite grids thus we can only estimate it on a finite number of 

grid points, although theoretically it can be a continuous 

function in some function space. Here we assume that ),( yxc

 
is estimated on the same grid as that on which the wave 

equation is solved.

 
If  the size of the unknown coefficient is small, one can use 

finite difference quotient, which is a simple technique to 

calculate the gradient. However when the size of the 

unknown parameters increases, this method becomes too 

expensive to be practical. 

 
The adjoint method has been widely used to calculate the 

gradient for large-size problem. In principle both continuous 

and discrete adjoint methods can be used to derive the 

gradient. Theoretically, there is no formal advantage of one 

method over another one in any general sense, however one 

method may be better suited to a given application. 

 
In the method of continuous adjoint, the adjoint equation, 

which is derived using methods such as calculus of variations, 

is numerically solved to generate the gradient. While in the 

method of discrete adjoint, the numerical scheme for the  

direct problem defined in (1)-(4) is considered as the forward 

model, thus this approach actually computes the derivatives 

of the numerical solution, rather than approximating the 

derivatives of the exact solution.      To derive the discrete 

adjoint, one can either take the adjoint of the forward 

numerical scheme directly, or apply automatic differentiation 

tool such as TAMC

 

[11-13]. Since the direct approach is 

time-consuming and error-prone, the automatic 

differentiation, which builds a new augmented program 

based on the program to solve the forward problem, had been 

widely used. Another advantage of automatic

 

differentiation 

is its quick and simple implementation, since the user just 

needs to provide a numerical program to calculate the cost 

functional and the automatic differentiation tool will generate 

an adjoint program which will compute the gradient. 

 

V. OPTIMIZATION ALGORITHMS 

We now provide a brief introduction to the optimization 

algorithm that will be used to solve the PDE-constrained 

optimization problem. L-BFGS, which stands for 'limited 

memory BFGS, will be used mainly because it is very 

efficient in solving optimization problem of large size 

parameters. It is well-known that L-BFGS, which 

implements Quasi-Newton method, uses the Broyden- 

Fletcher-Goldfarb-Shanno update to approximate the 

Hessian matrix. Consequently, unlike the regular  BFGS 

algorithm, the L-BFGS only maintains a very short history of 

the past updates, thus the requirement on storage has been 

reduced significantly.  

Let f(x) be the function to be minimized, g(x) be the 

gradient, and xk be the result of k-th iteration, we can define 

 ... and , the L-BFGS method 

is defined as the following:  

Step 1:  Set initial guess X0 and let K=0, choose parameter 

m, which is the number of BFGS corrections that are to be 

kept. Choose a sparse symmetric and positive definite matrix 

H0, which approximates the inverse Hessian matrix of f(x). 

Choose two parameters ~  and  as  and 

1~  . 

Step 2:  Compute  and 

where k is a parameter satisfying the Wolf  conditions:  

Step 3:  Let  and update the matrix kH

1m  times using the pairs and the 

following formula: 

 

Step 4:  Set and go to Step 2. 

A detailed description of the algorithm can be found in 

[15,16]. It has been shown [17] that this package is very 

robust and converges faster than many other popular methods 

such as the widely used standard conjugate gradient method.  

For comparison, we also tested three conjugate gradient 

optimization algorithms: the Fletcher-Reeves method, the 

Polak-Ribiere method and the  Positive Polak-Ribiere 

method.  Conjugate gradient method has been widely used to 

solve nonlinear optimization problem. Again suppose )(xf  

is a  smooth function to be minimized, and )(xg  is its 

gradient. Let 0x  be the initial guess, )( 00 xgg  , and  kx

be the  k-th iteration, the conjugate gradient method is 

implemented as the following: 

 

 

where kb  is a scalar and k  is a step length determined by 

means of a one-dimensional search. The three methods that 

are implemented in the package CG+[14] are almost 

identical with the only difference in the formula to calculate  

kb . 

In the Fletcher-Reeves method, ,  in the 

Polak-Ribiere method,  , while in 

the positive Polak-Ribiere method,  kb  is calculated as 
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thus only non-negative  
kb  is allowed in this method. 

It is worthy pointing out that the user can use any other 

gradient-based optimization algorithm to solve the 

optimization problem, since the proposed computational 

method is very flexible, and a new component can be easily 

integrated. Also the definition of the cost functional may 

affect the choice of the optimization algorithm as well. For 

more details, the readers are referred to the papers mentioned 

above.  

 

VI. NUMERICAL RESULTS AND DISCUSSIONS 

We solve the initial-boundary value problem given in 

(1)-(5) defined on  and ]1,0[t . Here ),,( tyxS , 

initial and boundary conditions are chosen accordingly so 

that . In 

this example, we set the two regularity parameters in (6) be 

zeros, as we assume that we have no prior information about 

),( yxc . We first validate the discrete adjoint generated by 

TAMC then illustrate the efficiency and accuracy of the 

proposed computational method.  

To validate the discrete adjoint generated by  TAMC, we 

first calculate the finite difference quotient approximations of 

jicJ ,/  at several selected grid points with various values of 

 . The approximated derivatives are then compared with the 

results generated by TAMC at the same grid points.  The 

numerical test is conducted on the grid with 40/1t  and 

20/1 yx hh . Such grid is chosen to ensure the stability of the 

numerical method in (10), and that the numerical solution of 

the wave equation is accurate enough. Finally, the grid cannot 

be too fine otherwise the computational cost will be an issue. 

The results in Table I show that TAMC generates very 

accurate discrete adjoints. The first column contains the grid 

points where the adjoint is calculated, while column 2 to 4 

contain the finite difference approximations of the adjoints 

by using various values of   . As we can see, when   is 

reduced from 0.1 to 0.001, the finite difference 

approximation converges to the results generated by TAMC, 

which is presented in column 5. Note that here we listed the 

results on 5 selected grid points only although it is possible to 

do so on all grid points, due to the space limit. However it is 

sufficient to show that TAMC is an effective and accurate 

tool to generate adjoint.  

TABLE I: COMPARISON OF DERIVATIVES BY VARIOUS METHODS 

),( ji yx  1.0  01.0  001.0  TAMC 

(0.1, 0.1) -0.01536 -0.01617 -0.01613 -0.01614 

(0.2,0.2) -0.26358 -0.27542 -0.27667 -0.27680 

(0.3, 0.3) -0.17491 -0.18262 -0.18343 -0.18352 

(0.4,0.4) -0.14826 -0.15486 -0.15555 -0.15563 

(0.5, 0.5) -0.09188 -0.09596 -0.09639 -0.09644 

(0.6,0.6) -0.04497 -0.04697 -0.04718 -0.04721 

(0.7, 0.7) -0.01437 -0.01501 -0.01508 -0.01509 

(0.8,0.8) -0.00129 -0.00134 -0.00135 -0.00135 

(0.9, 0.9) 0.00167 0.00122 0.00121 0.00121 

As a measure of the accuracy of the computational method, 

we consider the difference in both maximal and root mean 

square norms, which are defined as the following  

                    (12)
 

               (13)
 

 where jic ,
~

is the estimated value of ),( ji yxc .

 

 
Fig. 1.Cost functional vs number of iterations

 

 Fig. 2.Accuracy of the results vs number of iterations

 

 Fig. 3.2D view  of the difference
 

The result presented in Fig. 1 shows that the gradient 

generated by TAMC is accurate and effective, since the cost 

functional reduces to zero rapidly(It is below 
810
 after 50 

iterations). Consequently, the estimated ),( yxc  is also 

accurate as we can see from Fig. 2 that, both maximal and 

root mean square norms of the error are reduced to the level 

of 
310
 after 50 iterations. Finally, to see how accurate the 
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estimated ),( yxc  is, we plot the 2D view of the difference 

between the exact and estimated coefficient ),( yxc  in Fig. 3, 

which clearly demonstrates that the estimated coefficient is 

very accurate. 

To investigate the impact of the optimization algorithm on 

the result, we include the results by using L-BFGS and three 

Conjugate-Gradient algorithms: the Fletcher-Reeves (F-R) 

method, the Polak-Ribiere(P-R) method and the positive 

Polak-Ribiere (P P-R) method in the following table. The 

comparison is conducted when the RMS error for each case 

satisfies the specified tolerance, but the total number of 

function evaluations are different thus the total CPU time for 

each case varies significantly. Remark: The CPU time in 

Table 2. is the average of three runs. 

       TABLE II:PERFORMANCE COMPARISON AMONG VARIOUS ALGORITHMS 

  RMS <  Number of function evaluations 

 L-BFGS F-R P-R P P-R 

1.00E-002 26 53 55 55 

5.00E-003 42 89 83 84 

1.00E-003 57 109 112 116 

 CPU Time (Seconds) 

 L-BFGS F-R P-R P P-R 

1.00E-002 9.23 18.56 18.82 19.71 

5.00E-003 17.28 38.11 36.79 37.71 

1.00E-003 33.42 62.19 63.52 63.83 

 

The data in Table II  clearly shows that L-BFGS produces 

the most accurate result while the other three conjugate 

gradient algorithms are comparable. Note that the 

comparison is conducted for this specified problem, thus  it is 

possible that a different conclusion will be obtained for a 

different problem.  Nevertheless, here our goal is to show that 

the performance of the numerical method relies on the choice 

of the optimization algorithm.  

 

VII. CONCLUSIONS 

A computational method to estimate the acoustic 

coefficient ),( ji yxc  of a 2D acoustic wave equation is 

developed in this paper. Numerical results show that the 

proposed computational method provides a fast and robust 

approach to estimate the acoustic coefficient in the wave 

equation.  It is well-known that the performance of the 

method depends on various factors such as the numerical 

schemes for solving the forward problem, the method to 

generate the adjoint code, the choice of regularity parameters, 

the optimization algorithm used to minimize the cost 

functional, etc, and these issues will be further investigated in 

our future work. 
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