
 

                                                                                       

 

  
Abstract—The main goal of this paper is to use the wavelet 

transform modulus maxima lines (WTMM) and the detrended 
fluctuations analysis (DFA) methods to establish a new 
technique of lithofacies segmentation from well logs data. The 
WTMM is used to delimitate lithoafacies boundaries and the 
DFA is used to provide an exact estimation of the roughness 
coefficient of lithofacies. Application of the proposed idea at the 
synthetic and real data of a borehole located in Berkine basin 
shows that the proposed technique can enhance reservoirs 
characterization. 
 

Index Terms—WTMM, DFA, lithofacies, segmentation, 
reservoir.  
 

I. INTRODUCTION 
One of the main goals of geophysical studies is to apply 

suitable mathematical and statistical techniques to extract 
information about the subsurface properties. Well logs are 
largely used for characterizing reservoirs in sedimentary 
rocks. In fact it is one of the most important tools for 
hydrocarbon research for oil companies. Several parameters 
of the rocks can be analysed and interpreted in term of 
lithology, porosity, density, resistivity, salinity and the 
quantity and the kind of fluids within the pores. 

Geophysical well-logs often show a complex behavior 
which seems to suggest a fractal nature [1],[2]. They are 
geometrical objects exhibiting an irregular structure at any 
scale.  In fact, classifying lithofacies boundary from borehole 
data is a complex and non-linear problem. This is due to the 
fact that several factors, such as pore fluid, effective pressure, 
fluid saturation, pore shape, etc. affect the well log signals 
and thereby limit the applicability of linear mathematical 
techniques.  To classify lithofacies units, it is, therefore, 
necessary to search for a suitable non-linear method, which 
could evade these problems. 

The scale invariance of properties has led to the well 
known concept of fractals [3]. It is commonly observed that 
well log measurements exhibit scaling properties, and are 
usually described and modelled as fractional Brownian 
motions [1], [2], [4], [5], [6], [7], [8], [9], [10]. 

In previous works [11],[12], we have  shown that well logs 
fluctuations in oil exploration display scaling behaviour 
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that has been modelled as self affine fractal processes. They 
are therefore considered as fractional Brownian motion 
(fBm), characterized by a fractal k-β power spectrum model 
where k is the wavenumber and β is related to the Hurst 
exponent [13]. These processes are monofractal whose 
complexity is defined by a single global coefficient, the Hurst 
parameter H, which is closely related to the Hölder degree 
regularity Thus, characterizing scaling behaviour amounts to 
estimating some power law exponents. 

Petrophysical properties and classification of lithofacies 
boundaries using the geophysical well log data is quite 
important for the oil exploration. Multivariate statistical 
methods such as principle component and cluster analyses 
and discriminant function analysis have regularly been used 
for the study of borehole data.  These techniques are, 
however, semi-automated and require a large amount of data, 
which are costly and not easily available every time.  

The wavelet transform modulus maxima lines is a type a 
multifractal analysis, where the mathematical measure is 
replaced by the modulus of the continuous wavelet 
transform(CWT), and the support of this measure is replaced 
by the points of maxima of the modulus of the CWT[14]. 

The detrended fluctuation analysis is a statistical method 
introduced by Peng[15] in genetic works , it was used for 
estimation of Hurst exponent of DNA nucleotides. 
We use in this paper the WTMM combined with the DFA to 
establish a technique of lithofacies segmentation from 
well-logs data. 

II. PRINCIPAL OF THE DFA ESTIMATOR 
Method for quantifying the correlation propriety in 

no-stationary time series based on the computation of a 
scaling exponent H by means of a modified root mean square 
analysis of a random walk[15].  

To compute H from a time-series x(i) [i=1,..., N], like the 
interval tachogram, the time series is first integrated:  

                          (1) 
where M is the average value of the series x(i), and k ranges 
between 1 and N.  

Next, the integrated series y(k) is divided into boxes of 
equal length n and the least-square line fitting the data in each 
box, yn(k), is calculated. The integrated time series is 
detrended by subtracting the local trend yn(k), and the 
root-mean square fluctuation of the detrended series, F(n) is 
computed:  

                    (3) 
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F(n) is computed for all time-scales n.  
Typically, F(n) increases with n, the "box-size". If log F(n) 

increases linearly with log n, then the slope of the line 
relating F(n) and n in a log-log scale gives the scaling 
exponent H.  
where : 2. 1Hα = −  
If H=0.5, the time-series x(i) is uncorrelated (white noise).  
If H=1.0, the correlation of the time-series is the same of 1/f 
noise.  
If H=1.5, x(i) behaves like Brown noise (random walk)  

 

III. COMPARISON BETWEEN DFA AND VARIOGRAMS 
A variogram is a geostatistical method of comparing 

similarity of a data value to neighbouring values within a 
field of data [16]. The variogram is calculated by: 

2

1

1( ) * [ ( ) ( )]
N

i i h
i

h Z x Z x
N

γ +
=

= −∑                   (4) 

where N is the number of neighbouring data points within the 
specified lag distance being compared. 

Z(x) : is the physical property parameter value of the initial 
point. 

Z(xi+h) : is the parameter value of the neighbouring point. 
The value ( )hγ  is then plotted against versus the log 

distance between the initial point and the compared points. 
The resulting plot results in a curve where the variogram 
value increases with distance to a maximum, and levels off at 
a log distance where the total variability of the data field is 
reached. The geostatistical term for this distance is the range 
and is the correlation length discussed here. 

A comparison between DFA and variograms at fBm 
realizations shows that: 

-For signal of high number of samples (more than 1024) 
variograms gave better estimations of Hurst exponents 
compared to the DFA. 

-For signal of low number of samples we distinguish two 
cases: 

a) For signals of low Hurst exponent variograms method 
gives better results than the DFA. 

b) For signals of High Hurst exponents, DFA estimate 
better the Hurst exponent 

IV. THE WAVELET TRANSFORM MODULUS MAXIMA LINES 
The WTMM is composed of five steps [14] 
a- Calculation of the continuous wavelet transform. 
b- Calculation of the local maxima of the modulus of the 

CWT.  
c- Calculation of the function of partition Z(q, a) where a 

is the dilatation and q is a scale factor. 
d- Estimation of the spectrum of exponents ( )qτ . 
e- Estimation of the spectrum of singularities D(h). 

A. THE CONTINUOUS WAVELET TRANSFORM 

Here we review some of the important properties of 
wavelets, without any attempt at being complete. What 
makes this transform special is that the set of basis functions, 
known as wavelets, are chosen to be well-localized (have 
compact support) both in space and frequency [14],[17]. 
Thus, one has some kind of “dual-localization” of the 

wavelets. This contrasts the situation met for the Fourier 
Transform where one only has “mono-localization”, meaning 
that localization in both position and frequency 
simultaneously is not possible. 

The CWT of a function s(z) is given by Grossmann and 
Morlet [18] as:  

1( , ) ( ) ( )sC a b s z z dz
a

ψ
+∞

∗

−∞
= ∫                    (5) 

family test function is derived from a single function 
( )zψ defined to as the analyzing wavelet according to [19]:  

, ( ) ( )a b
z bz

a
ψ ψ −=                            (6) 

where a R+∗∈ is a scale parameter, b R∈  is the translation 
and ψ* is the complex conjugate of ψ. The analyzing function 

( )zψ  is generally chosen to be well localized in space (or 
time) and wavenumber. Usually, ψ(z) is only required to be 
of zero mean, but for the particular purpose of multiscale 
analysis ψ(z) is also required to be  orthogonal to some low 
order polynomials, up to the degree n−1, i.e., to have n 
vanishing moments : 

( ) 0 0 1nz z dz for n pψ
+∞

−∞
= ≤ ≤ −∫                (7) 

According to equation (7), p order moment of the wavelet 
coefficients at scale a reproduce the scaling properties of the 
processes. Thus, while filtering out the trends, the wavelet 
transform reveals the local characteristics of a signal, and 
more precisely its singularities. 
It can be shown that the wavelet transform can reveal the 
local characteristics of s at a point z0. More precisely, we 
have the following power-law relation [13],[20]: 

( )
0( , ) h zo

sC a z a≈ , when 0a +→              (8) 
where h is the Hölder exponent (or singularity strength).  The 
Hölder exponent can be understood as a global indicator of 
the local differentiability of a function s.  

The scaling parameter (the so-called Hurst exponent) 
estimated when analysing process by using Fourier 
Transform [13] is a global measure of self-affine process, 
while the singularity strength h can be considered as a local 
version (i.e. it describes ‘local similarities’) of the Hurst 
exponent. In the case of monofractal signals, which are 
characterized by the same singularity strength everywhere 
(h(z) = constant), the Hurst exponent equals h. Depending on 
the value of h, the input signal could be long-range correlated 
(h > 0.5), uncorrelated (h = 0.5) or anticorrelated  (h < 0.5). 

B. THE FONCTION OF PARTITION OF THE 
SPECTRUEM OF EXPONENTS 

The positioning of maxima is carried out using the 
calculation of the first and the second derivative of the 
modulus of the wavelets coefficients |C(a,b)|. 
i.e.: |C(a,b)| able a local maximum at the point bi If and only 
if : 

( , )
0b bi

C a b
b =

∂
=

∂
   and    

2

2

( , )
0b bi

C a b
b =

∂
∂

≺  

The function of partition is the sum of the modulus of the 
wavelet coefficients on the local maxima, with a power of 
order q.  

For low dilations the function of partition is dependent to 
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the spectrum of exponent by : ( )( , ) qZ q a aτ≈  
By consequences the spectrum of exponents is obtained by 

a simple linear fit of log(Z(q, a)) versus  log(a) .  

C.  THE SPECTRUM OF EXPOENTS 
Estimation of spectrum of exponent is based on the direct 

Legendre transform of the spectrum of exponents [14].  
( ) ( )( )minqD h qh qτ= −                      (9) 

In our algorithm we use the functions defined in [14], 
based  on Boltzmann’s weights. These functions are defined 
as: 

( ) [ ]
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where T̂  is the Boltzmann weight defined by : 
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The spectrum of exponents is obtained by the graphical 
representation of D(q) versus h(q) for different values of 

q[14]. [ ]T Sψ  is the continuous wavelet transform of the S(t) 
signal. 

V. OPTIMIZATION OF THE PROCESSING PARAMETERS 
Theoretically the spectrum of exponents of an fBm signal 

is a segment of a straight line written as [14]: 
 ( ) 1q qHτ = −                                 (10) 

H:  is the Hurst exponent. 
This stage consists to optimizing the WTMM processing 

parameters, by checking the linearity of the spectrum of 
exponents. Parameters to be optimized are:  

1) The maximum value of the scale factor qmax where the 
calculation of the function of partition is carried out on the 
interval [- qmax , +qmax ].  

2) Parameters of the analyzing wavelet, which is the 
complex Morlet wavelet. It is written as: 

( ) exp( ) exp( �t i t t i t tψ ω ω= − − −Ω −
       (11) 

Several experiments on fBm realizations showed that the 
optimal value of Ω  for a better estimation of the Hurst 
exponent is equal to 4.8. 

A.  DISCUSSION OF THE CHOICE OF THE COMPLEX 
MORLET WAVELET 

Two characteristics are important for any family of 
wavelets either continuous or discrete. These properties refer 
to the number of vanishing moments possessed by the 
wavelet and the regularity of the wavelet. The first propriety 
is defined as: 

A Wavelet is said to have M vanishing moments, if and 
only if for all positive integer m<M, it satisfies : 

( ) 0mz z dzψ
+∞

−∞
=∫                              (12) 

This definition shows to which order of polynomial the 
wavelet are orthogonal. It was showed [13] that the 
admissibility condition requires at least one vanishing 
moment, a notion being reflected in the fact that the wavelet 
contains at least one zero crossing. The number of zero 
crossing increases for increasing number of vanishing 
moments M. The number of vanishing moments is directly 
linked to the regularity of the Fourier transform of the 
wavelet at the origin.  
The Second important property of the wavelet concerns the 
differentiability and this corresponds to the decay rate of the 
Fourier coefficients as the frequency is being increased, i.e. 
k → ∞ . 
It was demonstrated that an erroneous choice of the analyzing 
wavelet limits the detectable range of singularities. For that 
we will use The Morlet Wavelet because: 
1-It is characterized by infinity of vanishing moments: 
We can demonstrate easily that for any   0m ≥   

 ( ) 0mz z dzψ
+∞

−∞
≈∫                              (13) 

2-It was demonstrated the existence of an intricate 
relationship between the smoothness of a function and its 
Fourier transform [13]. Given this relationship it possible to 
come up with estimates for the degree of regularity by taken 
the superior bound of all exponents α   that satisfies the 
following condition:  

( )(1 )k k dkαψ
+∞

−∞
+ < ∞∫               (14) 

In this way we can demonstrate also that The complex Morlet 
wavelet check this condition. 

B.  PROCESSING OF AN FBM SIGNAL WITH 1024 
SAMPLES 
The first signal to be processed is an fBm model with a 

Hurst exponent H=0.60 and 1024 samples. The realization of 
this last is represented in the Fig. (1.a) and the modulus of the 
wavelet coefficients is represented in Fig.1b.  

The skeleton of the wavelet coefficients is represented in 
Fig. (2.a). Physically each position in the skeleton can be a 
point of contact between two facies. The function of partition 
is represented in the half plan log-log in Fig.2.b. This last is 
calculated in the interval [- 2, +2] with a step of 0.125.  

The spectrum of exponents and the spectrum of 
singularities are represented in Fig.3a and Fig.3b. The solid 
line is the straight-line fit. One can remark that the spectrum 
of exponents is nonlinear and the spectrum of singularities is 
not concentrated in one point, which proves the erroneous 
choice value of qmax .    

The spectrums of exponents calculated for qmax =1.5, qmax 
=1 and qmax=0.5 are represented in Fig.4.a, Fig.4b and Fig.4c. 
Table I summarizes the values of H estimated for each value 
of qmax.. One can remark that the spectrum of exponents and 
the spectrum of singularities calculated for qmax=0.50 show 
that this value is optimal for the following points: 

-Linearity of the spectrum of exponents which indicate the 
homogeneity of this texture  
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-As an estimator of the coefficient of roughness. 

 
Fig..1 (a): fBm realization with 1024 samples and H= 0.60  

(b) : Modulus of the wavelet coefficients in  the plan half plan 
depth - log-dilations 

 
(a) 

 
(b) 

Fig. 2 (a) Skeleton of the module of the WT (b) Log the function of partition 
versus log-dilations. 

Our objective is to seek very fine textures for that we have 
to concentrate our studies on short range series. We have 
analyzed sets of signals with 128, 64 and 32 samples. First we 
built several fbm realizations with 128 samples which 
different by their coefficients of roughness, it is varied from 0 
to 1. A detailed study showed that optimal values of qmax are 
related to the Hurst exponent. Table II summarizes all 
obtained results. 

Table I summarizes the values of H estimated for each 
value of qmax.. One can remark that the spectrum of exponents 
and the spectrum of singularities calculated for qmax=0.50 
show that this value is optimal for the following points: 
-For the linearity of the spectrum of exponents which indicate 
the homogeneity of this texture  

 -As an estimator of the roughness coefficient. 

 
(a) 
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(a) 

Fig.3 (a) Spectrum of exponents for qmax=2. (b) Spectrum of singularities  
 

TABLE I: COEFFICIENTS OF HURST ESTIMATED VERSUS qmax. 

qmax H injected H calculated 
2.0 0.60 0.685 ± 0.010 
1.5 0.60 0.664 ± 0.005 
1.0 0.60 0.685 ± 0.006 
0.5 0.60 0.636 ± 0.03 

 
TABLE.II  OPTIMAL PARAMETERS ACCORDING TO ROUGHNESS 

H qmax 

0 0.20H ≤≺  0.125  
0.20 0.40H ≤≺  0.25  

0.40H ≥  0.50  

To enhance the estimation, we have calculated the Hurst 
exponent by the DFA, obtained results showed that this 
estimator gave better estimation of the Hurst exponent 
compared to the WTMM. 

Same work was made for signals with 64 and 32 samples; 
we have obtained the following results: 

- WTMM analysis showed that the two types of signals 
able the same optimal parameters as those obtained for 
the signals with 128 samples. 

- DFA Estimator gives better results than the WTMM. 

 
(a) 
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(b) 

 
(c) 

Fig. 4 Spectrum of exponents calculated for: 
(a) qmax=1.5 (b) qmax=1. (c) qmax=0.50 

 

VI. ANALYSIS OF PHYSICAL RESPONSE OF SEVERAL 
TEXTURES 

The theory developed by Arneodo shows [14]:  
S(t) is a signal constitutes of a whole of fBm process of Hurst 
exponents 1 2 3, , ,..., nH H H H , the spectrum of 
exponents ( )qτ calculated by the WTMM formalism is 
depends only on the maximal and minimal Hurst exponents. 
The spectrum of exponents consists of two segments of 
straight lines of equations (15): 

max

min

1....... ( 0)
( )

1....... ( 0)
qH if q

q
qH if q

τ
−⎧

= ⎨ −⎩

≺
;

                      (15) 

A. Application on synthetic data  

 
 

 (a) 

 (b) 

Fig. 6.WTMM analysis of the signal of the fig.5 
(a) Modulus of the wavelet coefficients 

(b) Spectrum of exponents 
 

One can remark that the WTMM is sensitive only to the 
following two textures: 

-The first, which has a maximum coefficient of roughness. 
-The second characterized by a minimal roughness. 
In order to check our source codes developed in C 

language  we have generated a model made up of 04 fBm 
realizations, with the following Hurst exponents: 0.40, 0.60, 
0.70 and 0.80, each signal has 64 samples. The realization of 
this model is represented in the Fig.(5). We applied a 
WTMM analysis to this signal, the modulus of the wavelets 
coefficients and the spectrum of exponents are represented in 
Fig.6.b and Fig.6.a. 

VII. THE PROCESSING ALGORITHM 
Our algorithm of segmentation is based on the sensitivity 

of the WTMM of more than one homogeneous texture; this 
last phenomenon is expressed by two segments of straight 
lines in the spectrum of exponents. Estimation of roughness 
coefficient of each texture is enhanced by DFA. The input of 
the program of segmentation is composed of two variables: 

a) Threshold of decision of homogeneity of textures, 
which it is equal to the difference between the slopes of the 
two segments of straight lines calculated for q<0 and q>0. 
We indicate by HΔ this variable in the flow chart and Δz is 
the sampling interval. 

b) Minimal size where texture is considered homogeneous, 
we indicate by W this length.  

The flow chart of the algorithm of segmentation is 
represented in Fig. (7). 

VIII. APPLICATION ON SYNTHETIC DATA 
We applied this algorithm at a whole of fBm realizations, 

with different Hurst exponents in order to model geological 
diversity. The modeled well-log consists of 02 fBm signals, 
each signal has 64 samples. Their Hurst exponents are equals 
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to  0.4  and 0.8. 
Fig. 8 represents the synthetic model with the obtained 

segmentation, in the half-plane depth - coefficient of 
roughness. The thickness of each column represents the 
thickness of the layer cut out and its height represents the 
value of the Hurst exponent estimated either by WTMM 
(black) or by DFA (red). The signal in green is the 
normalized fBm process. All details of segmentation are 
summarized in table 2. 

IX. APPLICATION ON REAL DATA 
The proposed idea has been applied at a borehole HFR 

located in the Berkine basin, it is a vast Paleozoic formation 
located in the South East of Algeria. It represents a very 
important hydrocarbon field.  

A.   GEOLOGICAL CONTEXT OF THE BERKINE BASIN 

The Berkine basin is a vast circular Palaeozoic depression, 
where the basement is situated at more than 7000 m in depth. 
Hercynian erosion slightly affected this depression because 
only Carboniferous and the Devonian are affected at their 
borders. The Mesozoic overburden varied from 2000m in 
Southeast to 3200m in the Northeast. This depression is an 
intracratonic basin which has preserved a sedimentary fill out 
of more than 6000 m. It is characterized by a complete 
section of Palaeozoic formations spanning from the 
Cambrian to the Upper Carboniferous. The Mesozoic to 
Cenozoic buried very important volume sedimentary material 
contained in this basin presents an opportunity for 
hydrocarbons accumulations. The Triassic province is the 
geological target of this study. It is mainly composed by the 
Clay and Sandstone deposits. 

Its thickness can reach up to 230m. The Sandstone 
deposits constitute very important hydrocarbon reservoirs. 
The SIF FATIMA area where the borehole data are collected 
is restricted in the the labelled 402b block.  

It is located in the central part of the Berkine basin (See 
Fig.9a). The hydrocarbon field is situated in the eastern erg of 
the basin characterised also by high amplitude topography. 
The studied area contains many drillings. However this paper 
will be focused on the HFR borehole. The main reservoir, the 
Lower Triassic Clay Sandstone labelled TAGI, is represented 
by fluvial and eolian deposits. The TAGI reservoir is 
characterised by three main levels: Upper, middle, and lower.  
Each level is subdivided into a total of nine subunits 
according to SONATRACH nomenclature [21].The lower 
TAGI is often of a very small thickness. It is predominantly 
marked by clay facies, sometimes by sandstones and 
alternatively by the clay and sandstone intercalations, with 
poor petrophysical characteristics (Fig. 9b). 

B.   AUTOMATIC SEGMENTATION 
We applied this technique of segmentation at the HFR 

borehole located in the Berkine basin; we have processed the 
Gamma ray well-log data.  Fig. (10) shows this well-log; the 
step of sampling is equal to 0.125(m).  Segmentation given in 
the stratigraphic column is used as a priori information, by 
consequences we have cut out each interval of the 
stratigraphic column. The various intervals of this last one are 
detailed in tableIII. Obtained lithofacies models of the three 

intervals are schematized in Fig.11. The right track of each 
scheme represents the obtained segmentation, however the 
left one is the gamma ray based model of lithofacies. 
Conclusion 

 
(a) 

 
(b) 

Fig. 8 Application of the algorithm of segmentation on a synthetic model. 
(a) The synthetic model (b) Obtained segmentation 

 
TABLE 2  OBTAINED SEGMENTATION OF THE 
SYNTHETIC MODEL WITH TWO ROUGHNESSES 

Layer H injected Depth 
injected (m) Depth calculated H calculated 

(WTMM) 
H calculated 

(DFA) 
1 0.40 7.875 7.875 0.363 0.392 
2 0.80 7.875 7.875 0.749 0.794 

We planned an automatic algorithm of segmentation, 
based on the sensitivity of the WTMM; the spectrum of 
exponents is an indicator of homogeneities of textures. We 
construct the lithofacies of the borehole HFR located in 
Algeria Sahara. Obtained lithofacies are compared with 
lithology units based of the gamma ray log (See the first track 
of figures 11a, 11b and 11c); this last provides information 
about shale percentage on the rock. Obtained results exhibit a 
big correlation between the two models.  

The aim of this study is to realize a more consistent 
lithologic interpretation of logs optimising the use of the 
multifractal analysis resisted by the continuous wavelet 
transform. A technique of lithofacies segmentation based on 
the wavelet transform modulus maxima lines WTMM 
combined with the detrended fluctuation analysis DFA is 
developed and successfully applied the well log data of HFR 
borehole located in Berkine Basin in order to classify 
lithofacies. It is important to outline, that the comparison of 
data sets with classification derived from the Gamma ray log 
is legitimate because the studied interval is a limited part of 
the TAGI. Our results suggest an enhanced facies 
segmentation which leads an accurate interpretation process 
to update the reservoir architecture. 

By implementing our method, we have demonstrated that 
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it is possible to provide an accurate geological interpretation 
within a short time in order to take immediate drilling and 
completion decisions, but also, in a longer-term purpose, to 
update the reservoir model. Since of its computational 
efficiency, it is proposed that the present methods can be 
further exploited for analysing large number of borehole data 
in other areas of interest. 

TABLE 3 INTERVALS OF THE STRATIGRAPHIC COLUMN 

Interval 
 

Minimal 
depth(m)  

Maximal 
depth(m)  

C1 2985 3258 
C2 3258 3327.5 
C3 3327.5 3350 

 
Fig. 9a. Geographic location of the Berkine Basin 

 
Fig. 9b.. Deposits age of the sets of the basins and the   lithostratigraphy of 

the Triassic province. 

 
Fig.10. gamma ray well-log of the hfr borehole 

 
 (a) 

 
(b) 

 
(c) 

Fig.11. Lithofacies segmentation of the HFR borehole: 
Interval: (a) C1, (b) C2, (c) C3                   

                WTMM                         DFA                   Normalized signal 
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