
  
  Abstract—The optical properties of electromagnetic (EM) 
waves propagating in one-dimensional plasma dielectric 
photonic crystal made of alternate thin layers of two materials 
namely micro plasma layer and dielectric material layer is 
studied theoretically. The dispersions both for ω < ωp and ω > 
ωp are deduced by transfer matrix method and the photonic 
band gap structure and the reflection spectra are computed. 
The results show that the band gap structure and reflection 
spectra are tuned correspondingly due to the dielectric 
constant of the microplasma layer modified differently in 
different frequency ranges. Parameter dependence of the 
effects is calculated and discussed. 

Index Terms—plasma; dispersion; photonic band structure; 
reflection spectra 
 

I. INTRODUCTION 
Photonic crystals (PCs) are composed of periodic 

dielectric or metal-dielectric nanostructures that affect the 
propagation of electromagnetic (EM) waves in the same 
way as the periodic potential in a semiconductor crystal 
affects the electron motion by defining allowed and 
forbidden electronic energy bands. Essentially, PCs contain 
regularly repeating internal regions of high and low 
dielectric constant. Photons (behaving as waves) propagate 
through the nanostructures depending - or not - depending 
on their wavelength. The wavelengths of light that are 
allowed to travel are known as modes, and the groups of 
allowed modes form bands. Disallowed bands of 
wavelengths are called photonic band gaps. Since the 
pioneering works of Yablonovitch [1] and John [2] on this 
field many new inquisitive ideas have been developed. The 
main attraction of the PCs is the existence of forbidden 
band gaps in their transmission spectra. To achieve suitable 
band gaps, there are great efforts to obtain tunability of 
band gaps [3-6]. Recently, a lot of studies on plasma 
photonic band gaps materials, which physics properties of 
dielectric constant, can vary continuously in space with the 
changes of frequency of incidence electromagnetic (EM) 
waves. The change in the physics properties makes the 
plasma photonic band gaps structure very different in 
behavior from the conventional composite materials. Now, 
these periodically plasma structure is known as plasma 
photonic crystal (PPC), which is presented by Hojo and 
Mase [7]. The technologies applications of PPC are now 
expanding widely as, for example, in plasma lens [8], 
plasma antenna [9], plasma stealth aircraft [10-13], etc. 
And the reflectionless transmission due to the Fabry-Perot 
resonance in PPC can be applied to frequency filters [14] 
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and interferometers [15]. Moreover, PPC has not only the 
characteristics of photonic crystal, but also the characteristics 
of plasma. Therefore we can regulate the plasma parameters 
to achieve the regulation of PPC. Moreover, by replacing 
solid material with plasma, two important features are added 
to conventional PC: time-varying controllability and strong 
dispersion around the electron plasma density. These two 
features make the frequency of EM wave propagating in PPC 
range from microwaves to THz waves, according to the scale 
and the electron density of plasma [16]. 

PPC is spatially periodic distribution structure, including 
plasma and dielectric periodic placed, or PPC is plasma layer 
with periodic distribution density. Several researches have 
been analyzed both analytically and numerically. Kuo et al. 
[17] have studied the interaction of EM waves with rapidly 
created time-varying periodic plasma. Hojo Hitoshi et al. [7] 
discussed the dispersion of EM waves in one-dimension PPC 
using a method analogous to Kroning-Penny’s problem in 
quantum physics. Liu et al. [18, 19] have investigated the 
EM waves propagating process and reflection and 
transmission electric field of Gauss pulses passing the PPC. 
Laxmi et al. [20] have studied the photonic band gap effects 
in one-dimension plasma dielectric photonic crystal. O. Sakai 
et al. have studied two-dimension PPC both experimentally 
[21] and numerically [22]. 

In the presented communication, we have studied the 
dispersion and reflection properties of a multi-layered 
structure with microplasma materials slabs. It has been 
founded that the plasma parameters have marked influence 
on their photonic band gap structures and reflection spectra 
in optical region.  

The structure of the paper is organized as follows. The 
model and corresponding analytical formulas, such as the 
dispersion relation and the reflection coefficient, are 
introduced in Sec. Ⅱ. Numerical results are presented and 
discussed in Sec.Ⅲ. Finally, conclusions are given in Sec. 
Ⅳ. 

 

II. MODEL AND FORMULATIONS 
The schematic diagram of the EM waves propagating in 

one-dimensional PPC is shown in Fig.1. We assume that the 
plasma dielectric photonic crystal is divided into a number of 
units and each unit has two medium which one is plasma 
materials with width a and the other is background material 
with width b, and Λ = a + b is the width of unit sell. For this 
periodic structure, the dielectric function has the form as 
given by 
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where ω  is the frequency of incidence, and 
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electron density of plasma layer, e is absolute  
 

 
Figure 1. Schematic diagram of normal incident EM wave propagation in 

1D PPC. 

Electron charge, m is electron mass, ε0 is the permittivity 
in free space, εb is the dielectric constant of the background 
material, and where the indices  n denotes the nth unit. 

Now the wave equation for EM waves propagating along 
the x-axis maybe written as 
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          (2) 

The electric field E(x) within each homogeneous layer is 
a combination of right-traveling waves and left-traveling 
waves and so it can be expressed as the sum of the incident 
wave and the reflected wave plane waves. Thus the solution 
of electric field E(x) for the nth unit can be written as, for ω 
< ωp  
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( )
{ } { }

{ } { }

i i

i i

px px

bx bx

k x n k x n
n n

k x n k x n
n n

A e A e
E z

B e B e

′ ′− Λ − − Λ

− Λ − − Λ

⎧ +⎪= ⎨
+⎪⎩        (3b) 

where  
1/22

2bx bk
c
ω ε⎛ ⎞

= ⎜ ⎟
⎝ ⎠

,
1/222

2 2 1p
pxk

c
ωω
ω

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

,

1/222

2 21 p
pxk

c
ωω
ω

⎡ ⎤⎛ ⎞
′ = −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

, 

where An, nA and Bn, nB are the amplitudes of counter 
propagation waves in different unit and c is the speed of 
light in free space. 

For obtaining the optical properties of the proposed 
structure we are using transfer matrix method. Therefore, 

the constants An, nA and Bn, nB  are related with 2×2 
matrix formulation for a period.  

Then we look for the solution the matrix elements for 
two cases, ω < ωp and ω > ωp. 

Firstly, we impose the continuity conditions of Ex and Hy 

at the surface ( )1z n= − Λ and ( )1z n b= − Λ + . We can 
obtain, for ω < ωp 
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and for ω > ωp 
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is unite transfer matrix, and we can 

obtain the element of the matrix from equations (4a) , (4b) 
and (5) with the condition 11 22 12 21 1M M M M− = , The matrix 
elements M11, M12, M21 and M22 are obtain as, for ω < ωp  
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Then, from the periodicity of ε(x) shown by equation (1) 
and also of given by E(x)=E(x+Λ), and using the Floquet 
theorem [23], we can obtain that the phase coefficient e-iKΛ 
is the eigenvalue of the eigenequation which can be 

k x
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described as below 
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Here, K is known as Bloch wave number and is a 
function of ω. Then the dispersion relation can be obtained 
from the equation (6), as written by  
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Substituting equations (6a) and (6b) in equation (8), we 
can obtain the dispersion relation of P-polarization 
electromagnetic waves propagation in one-dimension 
plasma dielectric photonic crystal, for pω ω< , 
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The reflection coefficient of such considered periodic 
structure for N number of period can be obtained by using 

Eqs.(4). The reflection 0
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by Nth layer is zero. So, the reflectance of the proposed 
structure for N number of period is given by [24] 
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So, we can use the Eqs.(9) and (10) to obtain and discuss 
the dispersion and reflection of the proposed structure. 

 

III. RESULTS AND DISCUSSION 
To evaluate the optical properties, band gap structure and 

reflectance, of the proposed multi-layered we used the Eqs. 
(9) and (10). We note that there are there selective 
parameters, ωpΛ/2πc (For simplicity, we introduce the 
dimensions variable ωΛ/2πc which is normalized to 1 at ω 
= ωp), plasma filling factor f (which is expressed as f = 
a/Λ), and the dielectric constant value εb which is 
normalized to εb/ε0 in the numerical calculations. 

Firstly the dispersion relation for ωpΛ/2πc = 1, εb = 1 (for 
air), f = 0.1 and f = 0.3 is shown in Fig. 2, of which (a) 
depicts 
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Figure 2. Photonic band gap structures for ωpΛ/2πc = 1,  

εb = 1 (for air), f = 0.1(solid line) and f = 0.3(solid dot line). 
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Figure 3. The reflection spectra versus the frequency of normal incident EM 

wave, the parameters are the same as Fig.2. 

The dispersion relation of ω < ω p and (b) does the one of 
ω > ω p. It can be seen that the dispersion relation becomes a 
band structure with frequency with frequency gaps, and there 
is a cut-off frequency. It is clear that the frequency band gap 
becomes larger with the increase in plasma filling factor. Fig. 
3 shows the reflection spectra versus the frequency of 
incident EM wave. Here we have taken the number of 
periods, N = 4, which is fixed in the numerical calculation. 
Other parameters are as the same as above. From Fig.3, we 
can easily conclude that the photonic band gap is getting 
larger with an increase in the plasma filling factor. The gap 
region shifts towards the higher frequency with the increase 
in plasma filling factor. 
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Figure 4. Photonic band gap structures for ωpΛ/2πc = 1, f = 0.1, 
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Figure 5. The reflection spectra versus the frequency of normal incident EM 
wave, the parameters are the same as Fig.4. 

Next the dispersion relation for ωpΛ/2πc = 1, f = 0.1, εb = 
1(for air), and εb = 2 (for SiO2) is shown in Fig 4, where the 
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frequency band gap is smaller for the larger dielectric 
constant value εb of background material or increasing the 
background material dielectric constant value εb  leads to 
the creation of new photonic band gaps and to flattering of 
the photonic band gaps which means the reduction of group 
velocity. Fig. 5 shows the reflection spectra versus the 
frequency of incident EM wave. It is obvious from Fig.5 
that the number of frequency band gap becomes larger and 
the frequency band gap gets flatter and deeper appreciably 
increasing the background material dielectric constant εb. 
At the same time, the frequency bandwidths will be 
broadened and the space between the photonic band gaps 
will be reduced. Comparing with the Fig.2 and Fig.3 or 
Fig.4 and Fig.5, there are highly consistent with each other 
for depiction of the photonic band gap. 
 

IV. CONCLUSION 
In summary, we have deduced the dispersion relations of 

EM wave propagation in one dimensional multi-layered 
structures containing plasma material both for ω < ωp and 
ω > ωp, exclusively. The graph for dispersion relations and 
the reflection spectra is computed and plotted. The effects 
of plasma parameters such as plasma filling factor and the 
background material dielectric constant value are discussed. 
The results show that the proposed multi-layered structure 
can be acted as a tunable photonic crystal which can be 
controlled by the external parameters. Comparing with 
conventional photonic crystal, the multi-layered structure 
containing plasma material, as an innovative and dynamic 
field, will bring more new physics phenomena, draw more 
attention and lead to many new applications in the future. 
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